满分5 > 初中数学试题 >

在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1).动点P,Q同时从点...

在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1).动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止.两点运动时的速度都是1cm/s.而当点P到达点A时,点Q正好到达点C.设P,Q同时从点B出发,经过的时间为t(s)时,△BPQ的面积为y(cm2)(如图2).分别以x,y为横、纵坐标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN.
(1)分别求出梯形中BA,AD的长度;
(2)写出图3中M,N两点的坐标;
(3)分别写出点P在BA边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在答题卷的图4(放大了的图3)中补全整个运动中y关于t的函数关系的大致图象.
manfen5.com 满分网
(1)P在AD边上运动时,三角形BQP以BQ为底边,以CD的长为高,因此可根据三角形BQP的面积为30cm2求出BC=10cm,而P、Q速度相同,P到A的时间与Q到C的时间相同,因此BA=BC.那么BA=BC=10cm. 求AD的长可通过构建直角三角形来求解.过A作AH⊥BC与H,那么在直角三角形ABH中,AH=CD=6cm,BA=10cm;因此可根据勾股定理求出BH=8cm,那么AD=BC-BH=2cm. (2)根据(1)得出的BA、AD的长,可求出P从B运动到A,从A运动到D分别用了多少时间,即可求出M、N的横坐标,已知M、N的纵坐标为30,由此可得出M、N的坐标. (3)三角形BQP中,BQ=t,BP=t,以BQ为底边的高,可用BP•sinB来表示,然后可根据三角形的面积计算公式得出关于y,t的函数关系式. 【解析】 (1)设动点出发t秒后,点P到达点A且点Q正好到达点C时,BC=BA=t, 则S△BPQ=×t×6=30, 所以t=10(秒). 则BA=10(cm), 过点A作AH⊥BC于H, 则四边形AHCD是矩形, ∴AD=CH,CD=AH=6cm, 在Rt△ABH中,BH=8cm, ∴CH=2cm, ∴AD=2cm; (2)可得坐标为M(10,30),N(12,30); (3)当点P在BA边上时, y=×t×tsinB=t2×=t2(0≤t<10); 当点P在DC边上时, y=×10×(18-t)=-5t+90(12<t≤18); 图象见下.
复制答案
考点分析:
相关试题推荐
如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.

manfen5.com 满分网 查看答案
如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点______(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
如图,对称轴为直线x=manfen5.com 满分网的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且∠AOC=60°,点B的坐标是(0,8manfen5.com 满分网),点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,同时,点Q从点O开始以每秒a(1≤a≤3)个单位长度的速度沿射线OA方向移动设t(0<t≤8)秒后,直线PQ交OB于点D.
(1)求∠AOB的度数及线段OA的长;
(2)求经过A,B,C三点的抛物线的解析式;
(3)当a=3,OD=manfen5.com 满分网时,求t的值及此时直线PQ的解析式;
(4)当a为何值时,以O,Q,D为顶点的三角形与△OAB相似?当a为何值时,以O,Q,D为顶点的三角形与△OAB不相似?请给出你的结论,并加以证明.

manfen5.com 满分网 查看答案
设抛物线y=ax2+bx-2与x轴交于两个不同的点A(-1,0)、B(m,0),与y轴交于点C,且∠ACB=90度.
(1)求m的值和抛物线的解析式;
(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标;
(3)在(2)的条件下,△BDP的外接圆半径等于______

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.