某气球内充满了一定质量的气球,当温度不变时,气球内气球的气压p(千帕)是气球的体积V(米
2)的反比例函数,其图象如图所示.(千帕是一种压强单位)
(1)写出这个函数的解析式;
(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕?
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?
考点分析:
相关试题推荐
在压力不变的情况下,某物体承受的压强P(pa)是它的受力面积Sm
2的反比例函数,其图象如图所示.
(1)求P与S之间的函数关系式;
(2)求当S=0.5m
2时物体承受的压强P.
查看答案
你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)s(mm
2)的反比例函数,其图象如图所示.
(1)写出y与s的函数关系式;
(2)求当面条粗1.6mm
2时,面条的总长度是多少米?
查看答案
制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.
(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
查看答案
为预防“流感“,某单位对办公室进行“药熏消毒”.已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物8分钟燃毕,此时办公室内每立方米空气中含药量为6毫克,据以上信息:
(1)分别求药物燃烧时和燃烧后,y与x的函数关系式;
(2)研究表明,当空气中含药量低于1.6毫克/立方米时,工作人员才能回到办公室,那么从消毒开始,经多长时间,工作人员才可以回到办公室?
查看答案
某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:
年 度 | 2006 | 2007 | 2008 | 2009 |
投入技改资金x(万元) | 2.5 | 3 | 4 | 4.5 |
产品成本y(万元/件) | 7.2 | 6 | 4.5 | 4 |
(1)请你认真分析表中数据,从你所学习过的一次函数、二次函数和反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;
(2)按照这种变化规律,若2010年已投入技改资金5万元.
①预计生产成本每件比2009年降低多少万元?
②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)
查看答案