满分5 > 初中数学试题 >

如图,反比例函数y=的图象与一次函数y=kx+b的图象交于点A(m,2),点B(...

如图,反比例函数y=manfen5.com 满分网的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOC的面积.

manfen5.com 满分网
(1)首先由反比例函数的解析式分别求得m、n的值,再进一步根据点A、B的坐标求得一次函数的解析式; (2)根据(1)中求得的解析式,令x=0,即可求得点C的坐标; (3)根据点A、C的坐标即可求得OC=1,OC边上的高是点A的横坐标,进一步求得三角形的面积. 【解析】 (1)由题意,把A(m,2),B(-2,n)代入中,得, ∴A(1,2),B(-2,-1)将A、B代入y=kx+b中得: ,∴, ∴一次函数解析式为:y=x+1; (2)由(1)可知:当x=0时,y=1, ∴C(0,1); (3)S△AOC=×1×1=.
复制答案
考点分析:
相关试题推荐
已知正比例函数y=k1x(k1≠0)与反比例函数y=manfen5.com 满分网(k2≠0)的图象交于A、B两点,点A的坐标为(2,1)
(1)求正比例函数、反比例函数的表达式;
(2)求点B的坐标.
查看答案
如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=manfen5.com 满分网的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.

manfen5.com 满分网 查看答案
如图,点P是双曲线manfen5.com 满分网(k1<0,x<0)上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y=manfen5.com 满分网(0<k2<|k1|)于E、F两点.
(1)图1中,四边形PEOF的面积S1=______(用含k1、k2的式子表示);
(2)图2中,设P点坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若没有,请说明理由.
manfen5.com 满分网
查看答案
如图,一次函数y=kx+b的图象与反比例函数manfen5.com 满分网的图象交于A(-3,1),B(2,n)两点,直线AB分交x轴、y轴于D,C两点.
(1)求上述反比例函数和一次函数的解析式;
(2)求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
如图,在直角坐标平面内,函数manfen5.com 满分网(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)当AD=BC时,求直线AB的函数解析式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.