阅读理【解析】
对于任意正实数a,b,∵
≥0,∴a-
+b≥0,∴a+b≥2
,只有点a=b时,等号成立.
结论:在a+b≥2
(a,b均为正实数)中,若ab为定值p,则a+b≥
,只有当a=b时,a+b有最小值2
.
根据上述内容,回答下列问题:
(1)若m>0,只有当m=______时,m+
有最小值______;
(2)思考验证:
①如图1,AB为半圆O的直径,C为半圆上任意一点,(与点A,B不重合).过点C作CD⊥AB,垂足为D,AD=a,DB=b.试根据图形验证a+b≥
,并指出等号成立时的条件;
②探索应用:如图2,已知A(-3,0),B(0,-4)P为双曲线
上的任意一点,过点P作PC⊥x轴于点C,PO⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
考点分析:
相关试题推荐
已知:等腰三角形OAB在直角坐标系中的位置如图,点A的坐标为(
),点B的坐标为(-6,0).
(1)若三角形OAB关于y轴的轴对称图形是三角形OA′B′,请直接写出A、B的对称点A′、B′的坐标;
(2)若将三角形OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数y=
的图象上,求a的值;
(3)若三角形OAB绕点O按逆时针方向旋转α度(0<α<90).
①当α=30°时点B恰好落在反比例函数y=
的图象上,求k的值;
②问点A、B能否同时落在①中的反比例函数的图象上,若能,求出α的值;若不能,请说明理由.
查看答案
如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;
(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.
查看答案
如图,已知反比例函数y=
的图象经过点A(1,-3),一次函数y=kx+b的图象经过点A与点C(0,-4),且与反比例函数的图象相交于另一点B.
(1)试确定这两个函数的表达式;
(2)求点B的坐标.
查看答案
如图,已知反比例函数y=
(x>0)的图象与一次函数y=-
x+
的图象交于A、B两点,点C的坐标为(1,
),连接AC,AC平行于y轴.
(1)求反比例函数的解析式及点B的坐标;
(2)现有一个直角三角板,让它的直角顶点P在反比例函数图象上的A、B之间的部分滑动(不与A、B重合),两直角边始终分别平行于x轴、y轴,且与线段AB交于M、N两点,试判断P点在滑动过程中△PMN是否与△CAB总相似,简要说明判断理由.
查看答案
如图,反比例函数y=
的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOC的面积.
查看答案