满分5 > 初中数学试题 >

(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置...

(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
(2)结论应用:
①如图2,点M,N在反比例函数y=manfen5.com 满分网(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:MN∥EF;
②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.
manfen5.com 满分网
(1)分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,根据CG∥DH,得到△ABC与△ABD同底,而两个三角形的面积相等,因而CG=DH,可以证明四边形CGHD为平行四边形,∴AB∥CD. (2)判断MN与EF是否平行,根据(1)中的结论转化为证明S△EFM=S△EFN即可. 【解析】 (1)分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,则∠CGA=∠DHB=90°,(1分) ∴CG∥DH ∵△ABC与△ABD的面积相等 ∴CG=DH(2分) ∴四边形CGHD为平行四边形 ∴AB∥CD.(4分) (2)①证明:连接MF,NE,(6分) 设点M的坐标为(x1,y1),点N的坐标为(x2,y2), ∵点M,N在反比例函数(k>0)的图象上, ∴x1y1=k,x2y2=k, ∵ME⊥y轴,NF⊥x轴, ∴OE=y1,OF=x2, ∴S△EFM=x1•y1=k,(7分) S△EFN=x2•y2=k,(8分) ∴S△EFM=S△EFN;(9分) ∴由(1)中的结论可知:MN∥EF. ②由(1)中的结论可知:MN∥EF.(10分) (若生使用其他方法,只要解法正确,皆给分.)
复制答案
考点分析:
相关试题推荐
平行于直线y=x的直线l不经过第四象限,且与函数y=manfen5.com 满分网(x>0)和图象交于点A,过点A作AB⊥y轴于点B,AC⊥x轴于点C,四边形ABOC的周长为8.求直线l的解析式.

manfen5.com 满分网 查看答案
如图,已知正比例函数y=x与反比例函数y=manfen5.com 满分网的图象交于A、B两点.
(1)求出A、B两点的坐标;
(2)根据图象求使正比例函数值大于反比例函数值的x的范围.

manfen5.com 满分网 查看答案
已知正比例函数y=kx的图象与反比例函数y=manfen5.com 满分网(k为常数,k≠0)的图象有一个交点的横坐标是2.
(1)求两个函数图象的交点坐标;
(2)若点A(x1,y1),B(x2,y2)是反比例函数y=manfen5.com 满分网图象上的两点,且x1<x2,试比较y1,y2的大小.
查看答案
已知双曲线y=manfen5.com 满分网与直线y=manfen5.com 满分网相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=manfen5.com 满分网上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线y=manfen5.com 满分网于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值;
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.

manfen5.com 满分网 查看答案
已知反比例函数y=manfen5.com 满分网的图象与一次函数y=x+m的图象相交于点(1,-3).
(1)求这两个函数的解析式;
(2)求这两个函数图象的另一个交点的坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.