满分5 > 初中数学试题 >

已知:反比例函数和在平面直角坐标系xOy第一象限中的图象如图所示,点A在的图象上...

已知:反比例函数manfen5.com 满分网manfen5.com 满分网在平面直角坐标系xOy第一象限中的图象如图所示,点A在manfen5.com 满分网的图象上,AB∥y轴,与manfen5.com 满分网的图象交于点B,AC、BD与x轴平行,分别与manfen5.com 满分网manfen5.com 满分网的图象交于点C、D.
(1)若点A的横坐标为2,求梯形ACBD的对角线的交点F的坐标;
(2)若点A的横坐标为m,比较△OBC与△ABC的面积的大小,并说明理由;
(3)若△ABC与以A、B、D为顶点的三角形相似,请直接写出点A的坐标.

manfen5.com 满分网
(1)首先根据点A的横坐标和双曲线的解析式,可以分别求得点A、B、C、D四个点的坐标.根据点C、D的坐标可以运用待定系数法求得直线CD的解析式,根据题意,得点F的横坐标是2,再进一步把x=2代入直线CD的解析式即可求得点F的纵坐标; (2)根据(1)中的方法可以用m表示出A、B、C、D四个点的坐标,从而求得直角三角形ABC的面积;由于三角形OBC的形状不规则,可以对其面积进行转换.作BM⊥x轴于点M.作CN⊥x轴于点N.根据反比例函数的解析式可知:S△OCN=S△OBM=1.所以该三角形的面积即为梯形CNMB的面积,根据梯形的面积公式进行计算,再进一步比较其大小; (3)根据两个三角形相似,则夹直角的两组对应边的比应相等,即AB2=AC•BD,再结合(2)中的坐标计算出线段的长度,列方程得m4=16,又m>0,则m=2. 【解析】 (1)如图,由题可知,当点A的横坐标为2时,点A、B、C、D的坐标分别为A(2,4),B(2,1),C(,4),D(8,1).(1分) 解一:直线CD的解析式为.(2分) ∵AB∥y轴,F为梯形ACBD的对角线的交点, ∴x=2时,. ∴点F的坐标为.(3分) 解二:. ∵梯形ACBD,AC∥BD,F为梯形ACBD的对角线的交点, ∴△ACF∽△BDF. ∴. ∴,,点F的纵坐标为.(2分) ∴点F的坐标为;(3分) (2)如图,作BM⊥x轴于点M.作CN⊥x轴于点N.当点A的横坐标为m时,点A、 B、C、D的坐标分别为. .(4分) S△OBC=S梯形CNMB+S△OCN-S△OBM=S梯形CNMB=(5分) ∴S△OBC>S△ABC;(6分) (3)点A的坐标为(2,4).(7分)
复制答案
考点分析:
相关试题推荐
如图,点A(m,m+1),B(m+3,m-1)都在反比例函数manfen5.com 满分网的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.

manfen5.com 满分网 查看答案
如图,一次函数y=kx+b的图象与反比例函数manfen5.com 满分网的图象交于A、B两点,与x轴交于点C,与y轴交于点D,已知OA=manfen5.com 满分网,点B的坐标为(manfen5.com 满分网,m),过点A作AH⊥x轴,垂足为H,AH=manfen5.com 满分网HO.
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积.

manfen5.com 满分网 查看答案
如图,已知一次函数y=-x+8和反比例函数manfen5.com 满分网图象在第一象限内有两个不同的公共点A、B.
(1)求实数k的取值范围;
(2)若△AOB的面积S=24,求k的值.

manfen5.com 满分网 查看答案
如图,点A、B在反比例函数manfen5.com 满分网的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2.
(1)求该反比例函数的解析式;
(2)若点(-a,y1),(-2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;
(3)求△AOB的面积.

manfen5.com 满分网 查看答案
如图,已知正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数y=manfen5.com 满分网的图象上,点P(m,n)是函数manfen5.com 满分网(k>0,x>0)的图象上的一点(与点B不重合),过点P分别作x轴、y轴的垂线,垂足分别为E、F.并设阴影部分为S.
(1)求B点坐标和k的值;
(2)求S关于m的函数关系式;
(3)当S=manfen5.com 满分网时,求点P的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.