满分5 > 初中数学试题 >

在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示. (1)如图,在△A...

在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).
manfen5.com 满分网
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
manfen5.com 满分网
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.
(1)根据已知可求得各角的度数,再根据三角函数求得各边的关系,从而不难得到结论. (2)根据已知表示各角的度数,再根据正弦定理对式子进行整理,从而得到结论; (3)注意分三种情况进行分析. (1)证明:∵∠A=2∠B,∠A=60° ∴∠B=30°,∠C=90° ∴c=2b,a=b ∴a2=3b2=b(b+c) (2)【解析】 关系式a2=b(b+c)仍然成立. 法一:证明:∵∠A=2∠B ∴∠C=180°-∠A-∠B=180°-3∠B 由正弦定理得 即a=2RsinA,b=2RsinB,c=2RsinC ∴b(b+c)=2RsinB(2RsinB+2RsinC) =4R2sinB[sinB+sin(180°-3∠B)] =4R2sinB(sinB+sin3∠B) =4R2sinB(2sin2BcosB) =4R2sin2B×sin2B =4R2sin22B 又∵a2=4R2sin2A=4R2sin22B ∴a2=b(b+c) (3)【解析】 若△ABC是倍角三角形,由∠A=2∠B,应有a2=b(b+c),且a>b. 当a>c>b时,设a=n+1,c=n,b=n-1,(n为大于1的正整数) 代入a2=b(b+c),得(n+1)2=(n-1)•(2n-1),解得n=5, 有a=6,b=4,c=5,可以证明这个三角形中,∠A=2∠B 当c>a>b及a>b>c时, 均不存在三条边长恰为三个连续正整数的倍角三角形. 边长为4,5,6的三角形为所求.
复制答案
考点分析:
相关试题推荐
已知:等边△ABC的边长为a.
探究(1):如图1,过等边△ABC的顶点A、B、C依次作AB、BC、CA的垂线围成△MNG,求证:△MNG是等边三角形且MN=manfen5.com 满分网a;
探究(2):在等边△ABC内取一点O,过点O分别作OD⊥AB、OE⊥BC、OF⊥CA,垂足分别为点D、E、F.
①如图2,若点O是△ABC的重心,我们可利用三角形面积公式及等边三角形性质得到两个正确结论(不必证明):结论1. OD+OE+OF=manfen5.com 满分网a;结论2. AD+BE+CF=manfen5.com 满分网a;
②如图3,若点O是等边△ABC内任意一点,则上述结论1,2是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.
manfen5.com 满分网
查看答案
如图,已知P为∠AOB的边OA上的一点,以P为顶点的∠MPN的两边分别交射线OB于M、N两点,且∠MPN=∠AOB=α(α为锐角).当∠MPN以点P为旋转中心,PM边与PO重合的位置开始,按逆时针方向旋转(∠MPN保持不变)时,M、N两点在射线OB上同时以不同的速度向右平行移动.设OM=x,ON=y(y>x>0),△POM的面积为S.若sinα=manfen5.com 满分网,OP=2.
(1)当∠MPN旋转30°(即∠OPM=30°)时,求点N移动的距离;
(2)求证:△OPN∽△PMN;
(3)写出y与x之间的关系式;
(4)试写出S随x变化的函数关系式,并确定S的取值范围.

manfen5.com 满分网 查看答案
如图,已知线段AB,分别以A、B为圆心,大于manfen5.com 满分网AB长为半径画弧,两弧相交于点C、Q,连接CQ与AB相交于点D,连接AC,BC.那么:
(1)∠ADC=______度;
(2)当线段AB=4,∠ACB=60°时,∠ACD=30度,△ABC的面积等于______

manfen5.com 满分网 查看答案
将一个正方形纸板(如图-)沿虚线剪下,得到七块几何图形的纸板(其中①③⑤⑥⑦是等腰直角三角形,②是正方形)我们把这七块纸板叫做七巧板.现用七巧板拼出一个图形,其空隙部分是一个箭头(如图二).
manfen5.com 满分网
(1)请在图二中用实线画出拼图的痕迹(如实线DP);
(2)如果图一中大正方形纸板的边长为10,计算图二中“箭头”的面积(即封闭平面图形ABCDEFG的面积).
查看答案
在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q.
(1)当点P在线段ED上时(如图1),求证:BE=PD+manfen5.com 满分网PQ;
(2)若BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与x的函数关系式(不要求写出自变量x的取值范围);
(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.