如图,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.
(1)当t=4时,求S的值;
(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.
考点分析:
相关试题推荐
如图,梯形ABCD中,AD∥BC,∠ABD=∠C,AB=2,AD=1.6,CD=3.
(1)求BD,BC的长;
(2)画出△BCD的外接圆(不写画法,保留作图痕迹),并指出AD是否为该圆的切线;
(3)计算tanC的值.
查看答案
如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,tanC=
.
(1)求点D到BC边的距离;
(2)求点B到CD边的距离.
查看答案
如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于E,AE=1.求梯形ABCD的高.
查看答案
如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,E为AB中点,EF∥DC交BC于点F,求EF的长.
查看答案
已知:如图,在梯形ABCD中,AD∥BC,AB=DC=AD=2,BC=4.求∠B的度数及AC的长.
查看答案