满分5 > 初中数学试题 >

如图,在△ABC中,∠C=90°,点D、E分别在AC、AB上,BD平分∠ABC,...

如图,在△ABC中,∠C=90°,点D、E分别在AC、AB上,BD平分∠ABC,DE⊥AB,AE=6,cosA=manfen5.com 满分网
求(1)DE、CD的长;(2)tan∠DBC的值.

manfen5.com 满分网
(1)由DE⊥AB,AE=6,cosA=,可求出AD的长,根据勾股定理可求出DE的长,由角平分线的性质可得DC=DE=8; (2)由AD=10,DC=8,得AC=AD+DC=18.由∠A=∠A,∠AED=∠ACB,可知△ADE∽△ABC,由相似三角形边长的比可求出BC的长,根据三角函数的定义可求出tan∠DBC=. 【解析】 (1)在Rt△ADE中,由AE=6,cosA==,得:AD=10,(1分) 由勾股定理得DE===8(2分) ∵BD平分∠ABC,DE⊥AB,∠C=90°,角平分线性质得:DC=DE=8.(4分) (2)方法一:由(1)AD=10,DC=8,得:AC=AD+DC=18. 在△ADE与△ABC,∠A=∠A,∠AED=∠ACB, ∴△ADE∽△ABC得:=,即=,BC=24,(5分) 得:tan∠DBC===(6分) 方法二:由(1)得AC=18,又cosA==,得AB=30, 由勾股定理得BC=24(5分)得:tan∠DBC=.(6分)
复制答案
考点分析:
相关试题推荐
如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:
(1)用签字笔画AD∥BC(D为格点),连接CD;
(2)线段CD的长为______
(3)请你在△ACD的三个内角中任选一个锐角,若你所选的锐角是______,则它所对应的正弦函数值是______
(4)若E为BC中点,则tan∠CAE的值是______

manfen5.com 满分网 查看答案
如图,∠MON=25°,矩形ABCD的对角线AC⊥ON,边BC在OM上,当AC=3时,AD长是多少?(结果精确到0.01)

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,AB=DC=8,∠B=60°,BC=12,连接AC.
(1)求tan∠ACB的值;
(2)若M、N分别是AB、DC的中点,连接MN,求线段MN的长.

manfen5.com 满分网 查看答案
已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足manfen5.com 满分网(如图1所示).
(1)当AD=2,且点Q与点B重合时(如图2所示),求线段PC的长;
(2)在图1中,连接AP.当AD=manfen5.com 满分网,且点Q在线段AB上时,设点B、Q之间的距离为x,manfen5.com 满分网,其中S△APQ表示△APQ的面积,S△PBC表示△PBC的面积,求y关于x的函数解析式,并写出函数定义域;
(3)当AD<AB,且点Q在线段AB的延长线上时(如图3所示),求∠QPC的大小.
manfen5.com 满分网
查看答案
如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).
(1)设△BPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形;
(3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值;
(4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.