图①,②是晓东同学在进行“居民楼高度、楼间距对住户采光影响问题”的研究时画的两个示意图.请你阅读相关文字,解答下面的问题.
(1)图①是太阳光线与地面所成角度的示意图.冬至日正午时刻,太阳光线直射在南回归线(南纬23.5°)B地上.在地处北纬36.5°的A地,太阳光线与地面水平线l所成的角为α,试借助图①,求α的度数;
(2)图②是乙楼高度、楼间距对甲楼采光影响的示意图.甲楼地处A地,其二层住户的南面窗户下沿距地面3.4米.现要在甲楼正南面建一幢高度为22.3米的乙楼,为不影响甲楼二层住户(一层为车库)的采光,两楼之间的距离至少应为多少米?
考点分析:
相关试题推荐
如图,A、B、C表示建筑在一座比较险峻的名山上的三个缆车站的位置,AB、BC表示连接三个缆车站的钢缆.已知A、B、C所处位置的海拔高度分别为124m、400m、1000m,如图建立直角坐标系,即A(a,124)、B(b,400),C(c,1100),若直线AB的解析式为y=
x+4,直线BC与水平线BC
1的交角为45度.
(1)分别求出A、B、C三个缆车站所在位置的坐标;
(2)求缆车从B站出发到达C站单向运行的距离.(精确到1m).
查看答案
如图,在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),OA=2,∠AOB=60°.
(1)求点A的坐标;
(2)若直线AB交y轴于点C,求△AOC的面积.
查看答案
如图,在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点A在第二象限内,点B、点C在x轴的负半轴上,∠CAO=30°,OA=4.
(1)求点C的坐标;
(2)如图,将△ACB绕点C按顺时针方向旋转30°到△A′CB′的位置,其中A’C交直线OA于点E,A’B’分别交直线OA、CA于点F、G,则除△A′B′C≌△AOC外,还有哪几对全等的三角形,请直接写出答案;(不再另外添加辅助线)
(3)在(2)的基础上,将△A′CB′绕点C按顺时针方向继续旋转,当△COE的面积为
时,求直线CE的函数表达式.
查看答案
已知关于x的方程x
2-2(m-1)x+m
2-3=0有两个不相等的实数根.
(1)求实数m的取值范围;
(2)已知a、b、c分别是△ABC的内角∠A、∠B、∠C的对边,∠C=90°,且tanB=
,c-b=4,若方程的两个实数根的平方和等于△ABC的斜边c的平方,求m的值.
查看答案
如图,Rt△ABC中,∠A=30°,AC=
,则AB=
.
查看答案