满分5 > 初中数学试题 >

将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边...

将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连接CD.
manfen5.com 满分网
(1)填空:如图1,AC=______
(1)根据勾股定理可得AC=BD==4;易知△ADC≌△BCD,利用四边形内角和是360°可得∠CDB=∠DCA=30°∵∠CAB=30°∴DC∥AB,∵AD=BC∴四边形ABCD是等腰梯形; (2)图中的三角形分为两类:30°,30°,120°;30°,60°,90度.按此找相似三角形即可; (3)过P作出△FBP的高.△FBP面积应等于FB×PK÷2,易得FB=AB-AF=8-k;则KB等于FB的一半,利用30°的正切值可求得FK的值.注意用t表示的线段应大于0. 【解析】 (1)4,4,等腰; (2)共有9对相似三角形. ①△DCE、△ABE与△ACD或△BDC两两相似, 分别是:△DCE∽△ABE,△DCE∽△ACD,△DCE∽△BDC,△ABE∽△ACD,△ABE∽△BDC;(有5对) ②△ABD∽△EAD,△ABD∽△EBC;(有2对) ③△BAC∽△EAD,△BAC∽△EBC;(有2对) 所以,一共有9对相似三角形. (3)由题意知,FP∥AE, ∴∠1=∠PFB, 又∵∠1=∠2=30°, ∴∠PFB=∠2=30°, ∴FP=BP 过点P作PK⊥FB于点K,则FK=BK=FB. ∵AF=t,AB=8, ∴FB=8-t,BK=(8-t). 在Rt△BPK中,PK=BK•tan∠2=(8-t)tan30°=(8-t). ∴△FBP的面积S=•FB•PK=(8-t)•(8-t), ∴S与t之间的函数关系式为: S=(8-t)2,或S=t2-t+, t的取值范围为:0≤t<8.
复制答案
考点分析:
相关试题推荐
如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:
(1)当t=2时,判断△BPQ的形状,并说明理由;
(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;
(3)作QR∥BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ.

manfen5.com 满分网 查看答案
如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD,使点B与点D重合,折痕分别交边AB、BC于点F、E,若AD=2,BC=8.
(1)求BE的长;
(2)求∠CDE的正切值.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于E,AE=1.求梯形ABCD的高.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,E为AB中点,EF∥DC交BC于点F,求EF的长.

manfen5.com 满分网 查看答案
已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.
(1)求证:△CPB≌△AEB;
(2)求证:PB⊥BE;
(3)若PA:PB=1:2,∠APB=135°,求cos∠PAE的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.