如图,在△ABC的外接圆O中,D是
的中点,AD交BC于点E,连接BD.
(1)列出图中所有相似三角形;
(2)连接DC,若在
上任取一点K(点A,B,C除外),连接CK,DK,DK交BC于点F,DC
2=DF•DK是否成立?若成立,给出证明;若不成立,举例说明.
考点分析:
相关试题推荐
如图,已知⊙O是△ABC的外接圆,CD是AB边上的高,AE是⊙O的直径.求证:AC•BC=AE•CD.
查看答案
我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB的最小覆盖圆就是以线段AB为直径的圆.
(1)请分别作出图1中两个三角形的最小覆盖圆;(要求用尺规作图,保留作图痕迹,不写作法)
(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论;(不要求证明)
(3)某地有四个村庄E,F,G,H(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.
查看答案
已知:如图,直径为OA的⊙M与x轴交于点O、A,点B、C把
分为三等份,连接MC并延长交y轴于点D(0,3)
(1)求证:△OMD≌△BAO;
(2)若直线l:y=kx+b把⊙M的面积分为二等份,求证:
k+b=0.
查看答案
(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,
求证:阴影部分四边形OFCG的面积是△ABC的面积的
.
(2)如图2,若∠DOE保持120°角度不变,
求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的
.
查看答案
已知:如图,在△ABC中,点D是∠BAC的角平分线上一点,BD⊥AD于点D,过点D作DE∥AC交AB于点E.求证:点E是过A,B,D三点的圆的圆心.
查看答案