满分5 > 初中数学试题 >

如图,⊙O的半径为2,直径CD经过弦AB的中点G,若的长等于圆周长的. (1)填...

如图,⊙O的半径为2,直径CD经过弦AB的中点G,若manfen5.com 满分网的长等于圆周长的manfen5.com 满分网
(1)填空:cos∠ACB=______

manfen5.com 满分网
连接OA,OB,由的长等于圆周长的知,∠AOB=360°÷6=60°,由圆周角定理知由特殊角的三角函数值知,cos∠ACB=cos30°=,由于直径CD经过弦AB的中点G,根据垂径定理知,OG⊥AB,点D是弧AB的中点,由圆周角定理知,∠ABD=∠ACD=30°,由正切的概念知,GD:GB=tan∠ABD=tan30°=. 【解析】 (1)∠AOB=360°÷6=60°. ∵∠BCD=∠ACD=30°, cos∠ACB=cos30°=. (2)解法一:连接OA、OB,则有OA=OB=2.(3分) ∵的长等于圆周长的, ∴∠AOB=360°×=60°.(4分) ∴△AOB是等边三角形,∠OAB=∠OBA=60°.(5分) ∵直径CD经过弦AB的中点G,∴CD⊥AB. ∴OG=OBsin60°=,GB=OBcos60°=1.(7分) ∴GD=OD-OG=2-.(8分) ∴=2-.(9分) 解法二:连接OA、OB,则有OA=OB=2.(3分) ∵的长等于圆周长的, ∴∠AOB=360°×=60°.(4分) ∵直径CD经过弦AB的中点G,∴CD⊥AB. ∴∠BOG=∠AOB=30°.(5分) ∴GB=1,OG==(7分) ∴GD=OD-OG=2-(8分) ∴=2-.(9分)
复制答案
考点分析:
相关试题推荐
如图,半径为2manfen5.com 满分网的⊙O内有互相垂直的两条弦AB、CD相交于P点.
(1)求证:PA•PB=PC•PD;
(2)设BC的中点为F,连接FP并延长交AD于E,求证:EF⊥AD;
(3)若AB=8,CD=6,求OP的长.

manfen5.com 满分网 查看答案
如图所示,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.
(1)如果⊙O的半径为4,manfen5.com 满分网,求∠BAC的度数;
(2)若点E为manfen5.com 满分网的中点,连接OE,CE.求证:CE平分∠OCD;
(3)在(1)的条件下,圆周上到直线AC距离为3的点有多少个?并说明理由.

manfen5.com 满分网 查看答案
如图,⊙O的直径AB垂直弦CD于M,且M是半径OB的中点,CD=8cm,求直径AB的长.

manfen5.com 满分网 查看答案
如图,点P是圆上的一个动点,弦AB=manfen5.com 满分网.PC是∠APB的平分线,∠BAC=30°.
(1)当∠PAC等于多少度时,四边形PACB有最大面积,最大面积是多少?
(2)当∠PAC等于多少度时,四边形PACB是梯形,说明你的理由.

manfen5.com 满分网 查看答案
(1)已知:如图1,在矩形ABCD中,AF=BE.求证:DE=CF;
(2)已知:如图2,⊙O1与坐标轴交于A(1,0)、B(5,0)两点,点O1的纵坐标为manfen5.com 满分网.求⊙O1的半径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.