满分5 > 初中数学试题 >

如图,A、P、B、C是⊙O上的四点,∠APC=∠BPC=60°,AB与PC交于Q...

manfen5.com 满分网如图,A、P、B、C是⊙O上的四点,∠APC=∠BPC=60°,AB与PC交于Q点.
(1)判断△ABC的形状,并证明你的结论;
(2)求证:manfen5.com 满分网
(3)若∠ABP=15°,△ABC的面积为4manfen5.com 满分网,求PC的长.
(1)由圆周角定理知,∠BAC=∠BPC=∠APC=∠BPC=60°,即可证明△ABC是等边三角形; (2)过B作BD∥PA交PC于D,证得△AQP∽△BQD,,再证PB=BD即可; (3)通过作辅助线,构造等腰直角三角形求解. (1)【解析】 △ABC是等边三角形. 证明:∵∠ABC=∠APC=60°,∠BAC=∠BPC=60°, ∴∠ACB=180°-∠ABC-∠BAC=60°, ∴△ABC是等边三角形; (2)证明:如图,过B作BD∥PA交PC于D,则∠BDP=∠APC=60°, 又∵∠AQP=∠BQD, ∴△AQP∽△BQD, ∴, ∵∠BPD=∠BDP=60°, ∴PB=BD, ∴; (3)【解析】 设正△ABC的高为h,则h=BC•sin60°. ∵BC•h=4, 即BC•BC•sin60°=4, 解得BC=4, 连接OB,OC,OP,作OE⊥BC于E, 由△ABC是正三角形知∠BOC=120°,从而得∠OCE=30°, ∴, 由∠ABP=15°得∠PBC=∠ABC+∠ABP=75°, 于是∠POC=2∠PBC=150°, ∴∠PCO=(180°-150°)÷2=15°, 如图,作等腰直角△RMN,在直角边RM上取点G,使∠GNM=15°,则∠RNG=30°, 作GH⊥RN,垂足为H. 设GH=1,则cos∠GNM=cos15°=. 在Rt△GHN中, NH=GN•cos30°,GH=GN•sin30°, ∴RH=GH,MN=RN•sin45°, ∴cos15°=. 在图中,作OF⊥PC于F, ∴PC=2CF=2OC•cos15°=.
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O于点F.
(1)AB与AC的大小有什么关系?为什么?
(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.

manfen5.com 满分网 查看答案
如图,AB是半圆O的直径,C为半圆上一点,E是BC的中点,AE交BC于点D,DF⊥AB于F,F为垂足,连接CF.
(1)判断△CDF的形状,并证明你的结论;
(2)若AC=8,cos∠CAB=manfen5.com 满分网,求线段BC和CD的长.

manfen5.com 满分网 查看答案
如图,在⊙O中,弦AB与DC相交于E,且AE=EC,求证:AD=BC.

manfen5.com 满分网 查看答案
在⊙O的内接△ABC中,AB+AC=12,AD⊥BC,垂足为D,且AD=3,设⊙O的半径为y,AB的长为x.
(1)求y关于x的函数关系式;
(2)当AB的长等于多少时,⊙O的面积最大,并求出⊙O的最大面积.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,
(1)求证:△ACE∽△CBE;
(2)若AB=8,设OE=x(0<x<4),CE2=y,请求出y关于x的函数解析式;
(3)探究:当x为何值时,tan∠D=manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.