满分5 > 初中数学试题 >

如图,AB是⊙O的直径,C、E是圆周上关于AB对称的两个不同点,CD∥AB∥EF...

如图,AB是⊙O的直径,C、E是圆周上关于AB对称的两个不同点,CD∥AB∥EF,BC与AD交于M,AF与BE交于N.
(1)在A、B、C、D、E、F六点中,能构成矩形的四个点有哪些?请一一列出(不要求证明);
(2)求证:四边形AMBN是菱形.

manfen5.com 满分网
(1)根据直径所对的圆周角是直角,和等弧对等弦,可以发现三个矩形; (2)根据题意,得到弧AC=弧AE=弧BF=弧BD,利用等弧对等弦和等弧所对的圆周角相等首先证明四边形是平行四边形,再根据一组邻边相等的平行四边形证明是菱形. (1)【解析】 能构成矩形的四个点有: ①C、E、F、D; ②A、E、B、D; ③A、F、B、C. (2)证明:∵C、E关于直径AB对称, ∴, 又∵CD∥AB∥EF, ∴, ∴∠1=∠2=∠3, ∴BM∥AN,AM=BM, 同理AM∥BN, ∴四边形ANBM为菱形.
复制答案
考点分析:
相关试题推荐
如图1,半圆O为△ABC的外接半圆,AC为直径,D为manfen5.com 满分网上的一动点.
(1)问添加一个什么条件后,能使得manfen5.com 满分网?请说明理由;
(2)若AB∥OD,点D所在的位置应满足什么条件?请说明理由;
(3)如图2,在(1)和(2)的条件下,四边形AODB是什么特殊的四边形?证明你的结论.manfen5.com 满分网
查看答案
如图,△ABC内接于⊙O,∠BAC=60°,点D是manfen5.com 满分网的中点.BC,AB边上的高AE,CF相交于点H.试证明:
(1)∠FAH=∠CAO;
(2)四边形AHDO是菱形.

manfen5.com 满分网 查看答案
AB是⊙O的直径,点E是半圆上一动点(点E与点A、B都不重合),点C是BE延长线上的一点,且CD⊥AB,垂足为D,CD与AE交于点H,点H与点A不重合.
(1)求证:△AHD∽△CBD;
(2)连HO,若CD=AB=2,求HD+HO的值.

manfen5.com 满分网 查看答案
在△ABC中,∠ACB=90°,O为AC上的动点.
(1)当OA=manfen5.com 满分网AC时,以O为圆心,OA的长为半径的圆与AB交于D,连接CD(如图),则图中相似的三角形有______
(2)当OA满足manfen5.com 满分网AC<OA<AC时,以O为圆心,OA的长为半径的圆交AB于D,交AC的延长线于E(如图).
①请你在图中适当添加一条辅助线,然后找出图中相似三角形(注:相似三角形只限于使用图中的六个字母),并加以证明;
②若⊙O的半径为5,AD=8,求tanB.

manfen5.com 满分网 查看答案
已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是manfen5.com 满分网的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P、Q.
(1)求证:P是△ACQ的外心;
(2)若manfen5.com 满分网,求CQ的长;
(3)求证:(FP+PQ)2=FP•FG.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.