满分5 > 初中数学试题 >

如图所示,圆O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI...

如图所示,圆O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI交圆O于点D,连接BD、DC.
(1)求证:BD=DC=DI;
(2)若圆O的半径为10cm,∠BAC=120°,求△BDC的面积.

manfen5.com 满分网
(1)根据题意可得∠BAD=∠DAC,进而可得BD=DC.同理可得∠BAD=∠DBC,易证△BDI为等腰三角形.结合BD=ID,容易得到证明. (2)根据圆内接四边形的性质与圆周角定理,可得∠DBC=∠DCB=60°,△BDC为正三角形.又OB=10cm,可得△BDC的面积. (1)证明:∵AI平分∠BAC, ∴∠BAD=∠DAC, ∴=, ∴BD=DC.                                        ∵BI平分∠ABC, ∴∠ABI=∠CBI. ∵∠BAD=∠DAC,∠DBC=∠DAC, ∴∠BAD=∠DBC. 又∵∠DBI=∠DBC+∠CBI,∠DIB=∠ABI+∠BAD, ∴∠DBI=∠DIB, ∴△BDI为等腰三角形, ∴BD=ID, ∴BD=DC=DI.                                     (2)【解析】 当∠BAC=120°时,△ABC为钝角三角形, ∴圆心O在△ABC外. 连接OB、OD、OC. ∴∠DOC=∠BOD=2∠BAD=120°, ∴∠DBC=∠DCB=60°, ∴△BDC为正三角形.                              ∴OB是∠DBC的平分线, 延长CO交BD于点E,则OE⊥BD, ∴BE=BD, 又∵OB=10, ∴BD=2OBcos30°=2×10×=10. ∴CE=BD•sin60°=10×=15, ∴S△BDC=BD•CE=×10×15=75. 答:△BDC的面积为75cm2.
复制答案
考点分析:
相关试题推荐
在探讨圆周角与圆心角的大小关系时,小亮首先考虑了一种特殊情况(圆心在圆周角的一边上)如图1所示:
∵∠AOC是△ABO的外角
∴∠AOC=∠ABO+∠BAO
又∵OA=OB
∴∠OAB=∠OBA
∴∠AOC=2∠ABO
即∠ABC=manfen5.com 满分网∠AOC
如果∠ABC的两边都不经过圆心,如图2、3,那么结论会怎样?请你说明理由.
manfen5.com 满分网
查看答案
如图,已知半圆O的直径AB=4,将一个三角板的直角顶点固定在圆心O上,当三角板绕着点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连接AD、BC交于点E.
(1)求证:△ACE∽△BDE;
(2)求证:BD=DE恒成立;
(3)设BD=x,求△AEC的面积y与x的函数关系式,并写出自变量x的取值范围.

manfen5.com 满分网 查看答案
已知:如图,点O2是⊙O1上一点,⊙O2与⊙O1相交于A、D两点,BC⊥AD,垂足为D,分别交⊙O1、⊙O2于B、C两点,延长DO2交⊙O2于E,交BA延长线于F,BO2交AD于G,连接AD.
(1)求证:∠BGD=∠C;
(2)若∠DO2C=45°,求证:AD=AF;
(3)若BF=6CD,且线段BD、BF的长是关于x的方程x2-(4m+2)x+4m2+8=0的两个实数根,求BD、BF的长.

manfen5.com 满分网 查看答案
如图,在⊙O中,弦AB与CD相交于点P,连接AC、DB.
(1)求证:△PAC与△PDB是否相似______(填“是”或“否”);
(2)当manfen5.com 满分网=______时,manfen5.com 满分网=4.

manfen5.com 满分网 查看答案
如图,⊙O的弦AB=10,P是弦AB所对优弧上的一个动点,tan∠APB=2,
(1)若△APB为直角三角形,求PB的长;
(2)若△APB为等腰三角形,求△APB的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.