满分5 > 初中数学试题 >

如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所...

如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△AnBnCn的顶点Bn、Cn在圆上.
manfen5.com 满分网manfen5.com 满分网
(1)如图1,当n=1时,求正三角形的边长a1
(2)如图2,当n=2时,求正三角形的边长a2
(3)如题图,求正三角形的边长an(用含n的代数式表示)
(1)设PQ与B1C1交于点D,连接B1O,得出OD=A1D-OA1,用含a1的代数式表示OD,在△OB1D中,根据勾股定理求出正三角形的边长a1; (2)设PQ与B2C2交于点E,连接B2O,得出OE=A1E-OA1,用含a2的代数式表示OE,在△OB2E中,根据勾股定理求出正三角形的边长a2; (3)设PQ与BnCn交于点F,连接BnO,得出OF=A1F-OA1,用含an的代数式表示OF,在△OBnF中,根据勾股定理求出正三角形的边长an. 【解析】 (1)设PQ与B1C1交于点D,连接B1O. ∵△PB1C1是等边三角形, ∴A1D=PB1•sin∠PB1C1=a1•sin60°=a1, ∴OD=A1D-OA1=a1-1, 在△OB1D中,OB12=B1D2+OD2, ∴OD=A1D-OA1=a1-1, 即12=(a1)2+(a1-1)2, 解得a1=; (2)设PQ与B2C2交于点E,连接B2O. ∵△A2B2C2是等边三角形, ∴A2E=A2B2•sin∠A2B2C2=a2•sin60°=a2, ∵△PB1C1是与△A2B2C2边长相等的正三角形, ∴PA2=A2E=a2, OE=A1E-OA1=a2-1, 在△OB2E中,OB22=B2E2+OE2, 即12=(a2)2+(a2-1)2, 解得a2=; (3)设PQ与BnCn交于点F,连接BnO, 得出OF=A1F-OA1=nan-1, 同理,在△OBnF中,OBn2=BnF2+OF2, 即12=(an)2+(nan-1)2, 解得an=.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,已知BC是⊙O的直径,AH⊥BC,垂足为D,点A为manfen5.com 满分网的中点,BF交AD于点E,且BE•EF=32,AD=6.
(1)求证:AE=BE;
(2)求DE的长;
(3)求BD的长.
查看答案
我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.
例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).
请你用上面的思想和方法对下面关于圆的问题进行研究:
(1)如图1,在圆O所在平面上,放置一条直线m(m和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些?(直接写出两个即可)
(2)如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心的两条直线m和n(m与圆O分别交于点A、B,n与圆O分别交于点C、D).请你根据所构造的图形提出一个结论,并证明之;
(3)如图3,其中AB是圆O的直径,AC是弦,D是manfen5.com 满分网的中点,弦DE⊥AB于点F.请找出点C和点E重合的条件,并说明理由.

manfen5.com 满分网 查看答案
已知⊙O的内接四边形ABCD中,AD∥BC.试判断四边形ABCD的形状,并加以证明.
查看答案
已知,如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF
(1)求证:AB=AC;
(2)若AC=3cm,AD=2cm,求DE的长.

manfen5.com 满分网 查看答案
已知:如图,两个等圆⊙O1和⊙O2相交于A,B两点,经过点A的直线与两圆分别交于点C,点D,经过点B的直线与两圆分别交于点E,点F.若CD∥EF,求证:
(1)四边形EFDC是平行四边形;
(2)manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.