满分5 > 初中数学试题 >

如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,交于D,连接AC ①请写出两个...

如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,交manfen5.com 满分网于D,连接AC
①请写出两个不同类型的正确结论.
②若CB=16,ED=4,求⊙O的半径.

manfen5.com 满分网
因为AB是⊙O的直径,可得∠ACB=90°,由OD⊥CB,可利用垂径定理得出一些结论如BE=CE、等.第二问直接利用垂径定理把问题放在Rt△OBE中解决. 【解析】 (1)不同类型的正确结论有:①BE=CE,②=,③∠BED=90°,④∠BOD=∠A, ⑤AC∥OD,⑥AC⊥BC,⑦OE2+BE2=OB2,⑧S△ABC=AC•CE等.(写出2个即可),(2分) (2)设⊙O的半径为x,则OE=x-4, ∵OD⊥BC, ∴CE=EB=BC=8;(3分) 在Rt△OBE中, ∵OE2+EB2=OB2, ∴(x-4)2+82=x2,(5分) 解得x=10, 所以⊙O的半径是10.(6分)
复制答案
考点分析:
相关试题推荐
已知:如图,∠PAC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,求圆心O到AP的距离及EF的长.

manfen5.com 满分网 查看答案
如图,△OAB中,OA=OB,以O为圆心的圆交BC于点C,D,求证:AC=BD.

manfen5.com 满分网 查看答案
如图,已知⊙O的直径AB垂直于弦CD,垂足为G,F是CD延长线上的一点,AF交⊙O于点E,连接CE.若CF=10,manfen5.com 满分网,求CE的长.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.
(1)请写出五个不同类型的正确结论;
(2)若BC=8,ED=2,求⊙O的半径.

manfen5.com 满分网 查看答案
如图,已知⊙O的直径AB垂直弦CD于点E,连接CO并延长交AD于点F,若CF⊥AD,AB=2,求CD的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.