满分5 > 初中数学试题 >

下列命题中,正确的是( ) ①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角...

下列命题中,正确的是( )
①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90°的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同圆或等圆中,同弧所对的圆周角相等.
A.①②③
B.③④⑤
C.①②⑤
D.②④⑤
根据圆周角定理及确定圆的条件对各个命题进行分析,从而得到答案. 【解析】 ①、圆周角的特征:一是顶点在圆上,二是两边都和圆相交,故错误; ②、必须是同弧或等弧所对的圆周角和圆心角,故错误; ③、圆周角定理,故正确; ④、符合确定圆的条件,故正确; ⑤、符合圆周角定理,故正确; 所以正确的是③④⑤. 故选B.
复制答案
考点分析:
相关试题推荐
如图,圆内接四边形ABCD是由四个全等的等腰梯形组成,AD是⊙O的直径,则∠BEC的度数为( )
manfen5.com 满分网
A.15°
B.30°
C.45°
D.60°
查看答案
如图:⊙O上有A、B、C、D、E五点,且已知AB=BC=CD=DE,AB∥ED.
(1)求∠A、∠E的度数;
(2)连CO交AE于G,交manfen5.com 满分网于H,写出四条与直径CH有关的正确结论.(不必证明)

manfen5.com 满分网 查看答案
已知:如图,在⊙O中,弦AD=BC.求证:AB=CD.

manfen5.com 满分网 查看答案
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.
(1)P是manfen5.com 满分网上一点(不与C、D重合),求证:∠CPD=∠COB;
(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.

manfen5.com 满分网 查看答案
已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.
(Ⅰ)当扇形CEF绕点C在∠ACB的内部旋转时,如图1,求证:MN2=AM2+BN2
(思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程.)
(Ⅱ)当扇形CEF绕点C旋转至图2的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.
manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.