如图,点A、B、C是⊙O上的三点,AB∥OC.
(1)求证:AC平分∠OAB.
(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求PE的长.
考点分析:
相关试题推荐
如图,AB是⊙O的直径,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥BP于F.
(1)若AB=12,当点P在⊙O上运动时,线段EF的长会不会改变?若会改变,请说明理由;若不会改变,请求出EF的长;
(2)若AP=BP,求证四边形OEPF是正方形.
查看答案
已知:如图,AB是⊙O的一条弦,点C为
的中点,CD是⊙O的直径,过C点的直线l交AB所在直线于点E,交⊙O于点F.
(1)判定图中∠CEB与∠FDC的数量关系,并写出结论;
(2)将直线l绕C点旋转(与CD不重合),在旋转过程中,E点,F点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明.
查看答案
已知:如图,M是
的中点,过点M的弦MN交AB于点C,设⊙O的半径为4cm,MN=
cm.
(1)求圆心O到弦MN的距离;
(2)求∠ACM的度数.
查看答案
如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.
(1)求证:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的直径.
查看答案
如图1,半圆O为△ABC的外接半圆,AC为直径,D为
上的一动点.
(1)问添加一个什么条件后,能使得
?请说明理由;
(2)若AB∥OD,点D所在的位置应满足什么条件?请说明理由;
(3)如图2,在(1)和(2)的条件下,四边形AODB是什么特殊的四边形?证明你的结论.
查看答案