满分5 > 初中数学试题 >

如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中上一点,延长DA至点E,...

如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中manfen5.com 满分网上一点,延长DA至点E,使CE=CD.
(1)求证:AE=BD;
(2)若AC⊥BC,求证:AD+BD=manfen5.com 满分网CD.

manfen5.com 满分网
(1)先证出△AEC≌△BDC,只要再找一对角相等就可以了,利用边相等,可得∠CAB=∠CBA,∠CEA=∠CDE,而∠CAB=∠CDB=∠CDE,故∠CEA=∠CDB,(CE=CD,∠CAE=∠CBD)再利用SAS可证出△AEC≌△BDC. (2)利用(1)中的全等,可得,AE=BD,∠ECA=∠DCB,那么就有∠ECD=∠ECA+∠ACD=90°,根据勾股定理得DE=CD,而DE=AD+AE=AD+BG,所以有AD+BD=CD. 证明:(1)∵△ABC是⊙O的内接三角形,AC=BC, ∴∠ABC=∠BAC, ∵CE=CD, ∴∠CDE=∠CED; 又∵∠ABC=∠CDE, ∴∠ABC=∠BAC=∠CDE=∠CED,(同弧上的圆周角相等) ∴∠ACB=∠DCE, ∴∠BCD=∠ACE, AC=BC,∠ACE=∠BCD,CE=CD; 在△AEC和△BDC中, ∴△AEC≌△BDC(SAS), ∴AE=BD. (2)∵AC⊥BC, ∴∠ACB=90°, ∴∠DCE=90°; 又∵CD=CE, ∴△DCE为等腰直角三角形, ∴DE=CD, 又∵DE=AD+AE且AE=BD, ∴AD+BD=CD.
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交manfen5.com 满分网于D.
(1)请写出四个不同类型的正确结论;
(2)连接CD,设∠CDB=α,∠ABC=β,试找出α与β之间的一种关系式,并予以证明.

manfen5.com 满分网 查看答案
如图所示,圆O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI交圆O于点D,连接BD、DC.
(1)求证:BD=DC=DI;
(2)若圆O的半径为10cm,∠BAC=120°,求△BDC的面积.

manfen5.com 满分网 查看答案
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F.
(1)判断BE是否平分∠ABC,并说明理由;
(2)若AE=6,BE=8,求EF的长.

manfen5.com 满分网 查看答案
如图,AB、CD是⊙O的两条弦,延长AB、CD交于点P,连接AD、BC交于点E.∠P=30°,∠ABC=50°,求∠A的度数.

manfen5.com 满分网 查看答案
已知,如图,AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB于D(AD<DB),点E是DB上任意一点(点D、B除外),直线CE交⊙O于点F,连接AF与直线CD交于点G.
(1)求证:AC2=AG•AF;
(2)若点E是AD(点A除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.