一不透明纸箱中装有形状,大小,质地等完全相同的4个小球,分别标有数字1,2,3,4.
(1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;
(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.
考点分析:
相关试题推荐
下面三张卡片上分别写有一个整式,把它的背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取一张,用列表或树形图求抽取的两张卡片上的整式的积可以化为二次三项式的概率是多少?
查看答案
某数学兴趣活动小组在上课时,老师为他们设计了一个抓奖游戏,并设置了两种抓奖方案,游戏规则是:在一个不透明箱子内放了3颗表面写有-2,-1,1且大小完全相同的小球,每个游戏者必须抓两次小球:分别以先后抓到的两个小球所标的数字作为一个点的横,纵坐标,如果这个点在第三象限则中奖.
方案一:先抓出一颗小球,放回去摇匀后再抓出一颗小球.
方案二:先抓出一颗小球且不放回摇匀后再抓出一颗小球
(1)请你计算(列表或画树状图)方案一的中奖概率;
(2)请直接写出方案二的中奖概率,如果你在做这个游戏,你会选择方案几?说明理由.
查看答案
四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.
(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;
(2)求取到的两张卡片上的数字之积为奇数的概率.
查看答案
用白纸剪一些边长相同的正三角形、正方形、正五边形、正六边形.用信封A装若干个正三角形、信封B装若干个正方形、信封C装若干个正五边形、信封D装若干个正六边形.将信封A、B、C、D(信封的大小、颜色、质地完全相同)装入不透明的袋子中.
(1)随机摸出一个信封,求该信封所装正多边形能镶嵌成一个平面图案的概率;
(2)随机摸出一个信封不放回,接着再随机摸出一个信封,求同时用这两次摸出信封中的两种正多边形能镶嵌成一个平面图案的概率?(用列表法或树形图法解答)
查看答案
在一个口袋中有n个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,从袋中随机地取出一个球,它是红球的概率是
.
(1)求n的值;
(2)把这n个球中的两个标号为1,其余分别标号为2,3,…x=5,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率.
查看答案