满分5 > 初中数学试题 >

已知:如图,⊙O的直径AD=2,,∠BAE=90度. (1)求△CAD的面积; ...

已知:如图,⊙O的直径AD=2,manfen5.com 满分网,∠BAE=90度.
(1)求△CAD的面积;
(2)如果在这个圆形区域中,随机确定一个点P,那么点P落在四边形ABCD区域的概率是多少?

manfen5.com 满分网
(1)由直径对的圆周角是90°,得∠ACD=∠BAE=90°,由得∠BAC=∠CAD=∠DAE, 所以∠BAC=∠CAD=∠DAE=30°,在Rt△ACD中,AD=2,CD=2sin30°=1,AC=2cos30°=,即S△ACD=AC×CD=. (2)连BD,作BF⊥AC,垂足为F,求得四边形ABCD的面积和圆的面积的比,根据概率的意义求得P点落在四边形ABCD区域的概率. 【解析】 (1)∵AD为⊙O的直径, ∴∠ACD=∠BAE=90°. ∵, ∴∠BAC=∠CAD=∠DAE. ∴∠BAC=∠CAD=∠DAE=30°. ∵在Rt△ACD中,AD=2,CD=2sin30°=1,AC=2cos30°=. ∴S△ACD=AC×CD=. (2)解法1:连BD, ∵∠ABD=90°,∠BAD=60°, ∴∠BDA=∠BCA=30°, ∴BA=BC. 作BF⊥AC,垂足为F, ∴AF=AC=, ∴BF=AFtan30°=, ∴S△ABC=AC×BF=, ∴SABCD=. ∵S⊙O=π, ∴P点落在四边形ABCD区域的概率==. (2)解法2:作CM⊥AD,垂足为M. ∵∠BCA=∠CAD(证明过程见解法1), ∴BC∥AD. ∴四边形ABCD为等腰梯形. ∵CM=ACsin30°=, ∴SABCD=(BC+AD)CM=. ∵S⊙O=π, ∴P点落在四边形ABCD区域的概率==.
复制答案
考点分析:
相关试题推荐
如图1,抛物线manfen5.com 满分网与x轴交于A、C两点,与y轴交于B点,与直线y=kx+b交于A、D两点.
(1)直接写出A、C两点坐标和直线AD的解析式;
(2)如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点P(m,n)落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?
manfen5.com 满分网
查看答案
甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏    .(填“公平”或“不公平”) 查看答案
哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜;和为偶数,则哥哥胜,该游戏对双方    (填“公平”或“不公平”). 查看答案
如图是一个被等分成12个扇形的转盘.请在转盘上选出若干个扇形涂上斜线(涂上斜线表示阴影区域,其中有一个扇形已涂),使得自由转动这个转盘,当它停止转动时,指针落在阴影区域的概率为   
manfen5.com 满分网 查看答案
晓明玩转盘游戏,当他转动如图所示的转盘,转盘停止时指针指向2的概率是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.