张红和王伟为了争取到一张观看奥运知识竞赛的入场券,他们各自设计了一个方案:
张红的方案是:转动如图所示的转盘,如果指针停在阴影区域,则张红得到入场券;如果指针停在白色区域,则王伟得到入场券(转盘被等分成6个扇形.若指针停在边界处,则重新转动转盘).
王伟的方案是:从一副扑克牌中取出方块1、2、3,将它们背面朝上重新洗牌后,从中摸出一张,记录下牌面数字后放回,洗匀后再摸出一张.若摸出两张牌面数字之和为奇数,则张红得到入场劵;若摸出两张牌面数字之和为偶数,则王伟得到入场券.
(1)计算张红获得入场券的概率,并说明张红的方案是否公平;
(2)用树状图(或列表法)列举王伟设计方案的所有情况,计算王伟获得入场券的概率,并说明王伟的方案是否公平?
考点分析:
相关试题推荐
小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.
这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?
查看答案
甲,乙两人在玩转盘游戏时,把转盘A,B分成3等份,4等份,并在每一份内标有数字.
游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲胜;指针所在区域的数字之积为偶数时,乙胜.如果指针恰好在分割线上,则需重新转动转盘.
(1)用树状图或列表的方法,求甲获胜的概率.
(2)这个游戏规则对甲,乙双方公平吗?请判断并说明理由.
查看答案
在一不透明的盒子中放有三个分别写有数字1,2,3的红色小球和五个分别写有1,2,3,4,5的白色小球,小球除颜色和数字外,其余完全相同.
(1)从中任意摸出一个小球,求摸出小球上的数字小于3的概率;
(2)现将五个白色小球取出后,放入另外一个不透明的盒子内,此时,玲玲和亮亮做游戏,他俩约定游戏规则,从这两个盒子中各摸出一个小球,它们上面的数字之和为奇数,玲玲获胜;和为偶数,亮亮获胜,这个游戏规则对双方公平吗为什么?
查看答案
如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成3等分,每份分别标有1,2,3这三个数字;转盘B被均匀地分成4等分,每份分别标有4,5,6,7这四个数字.有人为小明,小飞设计了一个游戏,其规则如下:①同时自由转动转盘A和B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.
(1)请你用列表或树形图求出小明胜和小飞胜的概率;
(2)游戏公平吗?若不公平,请你设计一个公平的规则.
查看答案
将背面完全相同,正面上分别写有数字1,2,3,4的四张卡片混合后,小明从中随机地抽取一张,把卡片上的数字做为被减数,将形状、大小完全相同,分别标有数字1,2,3的三个小球混合后,小华从中随机地抽取一个,把小球上的数字做为减数,然后计算出这两个数的差.
(1)请你用画树状图或列表的方法,求这两数差为0的概率;
(2)小明与小华做游戏,规则是:若这两数的差为非负数,则小明赢;否则,小华赢.你认为该游戏公平吗?请说明理由.如果不公平,请你修改游戏规则,使游戏公平.
查看答案