满分5 > 初中数学试题 >

你喜欢玩游戏吗? 小明和小华在如图所示的两个转盘上玩一个游戏.两个转盘中指针落在...

你喜欢玩游戏吗?
小明和小华在如图所示的两个转盘上玩一个游戏.两个转盘中指针落在每一个数字上的机会都均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,若指针停在等分线上,则重转一次,直至指针指向某一数字为止.用所指的两个数字作乘积.如果积为奇数,则小明赢;如果积为偶数,则小华赢,这个游戏公平吗?如果公平,请说明理由;如果不公平,请你做一修改,使他俩获胜的机会一样大.

manfen5.com 满分网
本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可. 【解析】 先根据游戏规则分析小明和小华取胜的概率:列表分析可得:按两个转盘中指针落在区域不同共24种情况;其乘积为偶数的有18种,为奇数的6种;则小华赢的概率大于小明赢的概率;故这个游戏不公平.要使游戏公平:只需是两人取胜时所包含的情况数目相等即可,如将游戏规则改为同为奇数或偶数,小华赢;一奇一偶,小明赢;这样游戏就公平了..
复制答案
考点分析:
相关试题推荐
小昆和小明相约玩一种“造数”游戏.游戏规则如下:同时抛掷一枚均匀的硬币和一枚均匀的骰子,硬币的正、反面分别表示“新数”的性质符号(约定硬币正面向上记为“+”号,反面向上记为“-”号),与骰子投出面朝上的数字组合成一个“新数”;如抛掷结果为“硬币反面向上,骰子面朝上的数字是4”,记为“-4”.
(1)利用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;
(2)写出组合成的所有“新数”;
(3)若约定投掷一次的结果所组合成的“新数”是3的倍数,则小昆获胜;若是4或5的倍数,则小明获胜.你觉得他们的约定公平吗?为什么?
查看答案
在一个不透明的盒子里装着分别标有数字1,2,3,4的四个完全相同的小球,现在甲、乙两位同学做游戏,游戏规则是:“甲先从盒子里随机摸出一个小球,记下小球上的数字后放回,乙再从盒子中随机摸出一个小球,也记下球上的数字放回,则游戏结束.若记下的数字甲比乙大,则甲获胜;若记下的数字甲不比乙大,则乙获胜”.
(1)用树状图分析此游戏有多少种可能出现的结果;
(2)该游戏规则对甲、乙双方公平吗?说明理由.
查看答案
如图,将两个可以自由转动的转盘分别分成面积相等的几个扇形,在分成的扇形上分别标上数字1,2,3,4,5.同时转动两个转盘.
(1)用树状图或列表法表示转盘停止后指针所指扇形上的数字可能出现的所有结果(若指针指在分界线上,则重转);
(2)如果甲、乙两人分别同时转动两个转盘,并规定:转盘停止后,若两转盘指针所指扇形上的数字之和为偶数,则甲胜;若数字之和为奇数,则乙胜.这个游戏对甲、乙两人公平吗?请说明理由.

manfen5.com 满分网 查看答案
A,B两个口袋中,都装有三个相同的小球,分别标有数字1,2,3,小刚、小丽两人进行摸球游戏.游戏规则是:小刚从A袋中随机摸一个球,同时小丽从B袋中随机摸一个球,当两个球上所标数字之和为奇数时小刚赢,否则小丽赢.这个游戏对双方公平吗?通过列表或画树状图加以说明.
查看答案
如图所给的A、B、C三个几何体中,按箭头所示的方向为它们的正面,设A、B、C三个几何体的主视图分别是A1、B1、C1;左视图分别是A2、B2、C2,俯视图分别是A3、B3、C3
(1)请你分别写出A1、A2、A3、B1、B2、B3、C1、C2、C3图形的名称;
(2)小刚先将这9个视图分别画在大小、形状完全相同的9张卡片上,并将画有A1、A2、A3的三张卡片放在甲口袋中,画有B1、B2、B3的三张卡片放在乙口袋中,画有C1、C2、C3的三张卡片放在丙口袋中,然后由小亮随机从这三个口袋中分别抽取一张卡片.
①通过补全下面的树状图,求出小亮随机抽取的三张卡片上的图形名称都相同的概率;
②小亮和小刚做游戏,游戏规则规定:在小亮随机抽取的三张卡片中只有两张卡片上的图形名称相同时,小刚获胜;三张卡片上的图形名称完全不同时,小亮获胜.这个游戏对双方公平吗?为什么?
manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.