甲、乙两人都想去买一本某种辞典,到书店后,发现书架上只有一本该辞典,于是两人都想把书让给对方先买,为此两人发生了“争执”.最后两人商定,用掷一枚各面分别标有数字1,2,3,4的正四面体骰子来决定谁先买.若甲赢,则乙买;若乙赢,则甲买.具体规则是:“每人各掷一次,若甲掷得的数字比乙大,则甲赢;若甲掷得的数字不比乙大,则乙赢”.
请你用“画树状图”的方法帮他们分析一下,这个规则对甲、乙双方是否公平?
考点分析:
相关试题推荐
实验中学要从学校演讲比赛一等奖获得者甲、乙两名同学中,推荐一名参加市演讲比赛,为此设计一个摸球和转盘游戏,如图,在一个暗箱中装有2个完全相同的球,分别标有数字“1”,“2”;另有一个被三等分的转盘,分别写有“1“,“2”,“3”.从暗箱中随机摸出一球,并且转动转盘一次,将摸出小球上的数字与转盘转出的数字相加,若和为奇数,则甲同学去参赛,否则乙同学去参赛,这个游戏公平吗?说明理由.
查看答案
A口袋中装有2个小球,它们分别标有数字1和2;B口袋中装有3个小球,它们分别标有数字3,4和5.每个小球除数字外都相同.甲、乙两人玩游戏,从A,B两个口袋中随机地各取出1个小球,若两个小球上的数字之和为偶数,则甲赢;若和为奇数,则乙赢.这个游戏对甲、乙双方公平吗?请说明理由.
查看答案
有两个可以自由转动的均匀转盘A,B都被分成了3等份,并在每一份内均标有数字,如图所示,规则如下:
①分别转动转盘;
②两个转盘停止后观察两个指针所指份内的数字(若指针停在等份线上,那么重转一次,直到指针指向某一份内为止).
(1)用列表法(或树状图)分别求出“两个指针所指的数字都是方程x
2-5x+6=0的解”的概率和“两个指针所指的数字都不是方程x
2-5x+6=0的解”的概率;
(2)王磊和张浩想用这两个转盘作游戏,他们规定:若“两个指针所指的数字都是x
2-5x+6=0的解”时,王磊得1分;若“两个指针所指的数字都不是x
2-5x+6=0的解”时,张浩得3分,这个游戏公平吗?若认为不公平,请修改得分规定,使游戏对双方公平.
查看答案
张彬和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:
张彬:如图,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到入场券;否则,王华得到入场券;
王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中,从中随机取出上个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券.
请你运用所学的概率知识,分析张彬和王华的设计方案对双方是否公平?
查看答案
有两个可以自由转动的均匀转盘A、B,分别被分成4等份、3等份,并在每份内均标有数字,如图所示,丁洋和王倩同学用这两个转盘做游戏,游戏规则如下:①分别转动转盘A和B;②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针指向某一份为止);③如果和为0,丁洋获胜,否则,王倩获胜.
(1)用列表法(或树状图)求丁洋获胜的概率;
(2)你认为这个游戏对双方公平吗?请说明理由.
查看答案