某商场“六一”期间进行一个有奖销售的促销活动,设立了一个可以自由转动的转盘,并规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).下表是此次促销活动中的一组统计数据:
转动转盘的次数n | 100 | 200 | 400 | 500 | 800 | 1000 |
落在“可乐”区域的次数m | 60 | 122 | 240 | 298 | | 604 |
落在“可乐”区域的频率 | 0.6 | 0.61 | 0.6 | | 0.59 | 0.604 |
(1)计算并完成上述表格;
(2)请估计当n很大时,频率将会接近______;假如你去转动该转盘一次,你获得“可乐”的概率约是______;(结果全部精确到0.1)
(3)在该转盘中,表示“车模”区域的扇形的圆心角约是多少?(结果精确到1°)
考点分析:
相关试题推荐
如图是在地上画出的半径分别为2m和3m的同心圆.现在你和另一人分别蒙上眼睛,并在一定距离外向圈内掷一粒较小的石子,规定一人掷中小圆内得胜,另一人掷中阴影部分得胜,未掷入半径为3m的圆内或石子压在圆周上都不算.
(1)你会选择掷中小圆内得胜,还是掷中阴影部分得胜?为什么?
(2)你认为这个游戏公平吗?如果不公平,那么大圆不变,小圆半径是多少时,使得仍按原规则进行,游戏是公平的?(只需写出小圆半径,不必说明原因)
查看答案
在一次晚会上,大家围着飞镖游戏前.只见靶子设计成如图形式.已知从里到外的三个圆的半径分别为1,2,3,并且形成A,B,C三个区域.如果飞镖没有停落在最大圆内或只停落在圆周上,那么可以重新投镖.
(1)分别求出三个区域的面积;
(2)雨薇与方冉约定:飞镖停落在A、B区域雨薇得1分,飞镖落在C区域方冉得1分.你认为这个游戏公平吗?为什么?如果不公平,请你修改得分规则,使这个游戏公平.
查看答案
小华与小丽设计了A,B两种游戏:
游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.
游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.
(1)请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由;
(2)若游戏A和B对于两人都不公平,则请你修改游戏A或游戏B,使修改后的规则,对于两人都公平.
查看答案
小红和小明在操场做游戏,他们先在地上画了半径分别2m和3m的同心圆(如图),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当裁判.
(1)你认为游戏公平吗?为什么?
(2)游戏结束,小明边走边想,“反过来,能否用频率估计概率的方法,来估算某一不规则图形的面积呢”.请你设计方案,解决这一问题.(要求补充完整图形,说明设计步骤、原理,写出估算公式)
查看答案
现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.
(1)请你通过列表(或树状图)分别计算乘积是2的倍数和3的倍数的概率;
(2)你认为这个游戏公平吗?为什么?若你认为不公平,请你修改得分规则,使游戏对双方公平.
查看答案