满分5 > 初中数学试题 >

本题为选做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分. 甲题:关...

本题为选做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.
甲题:关于x的一元二次方程x2+(2k-3)x+k2=0有两个不相等的实数根α、β.
(1)求k的取值范围;
(2)若α+β+αβ=6,求(α-β)2+3αβ-5的值.
乙题:如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=manfen5.com 满分网DC,连接EF并延长交BC的延长线于点G
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
manfen5.com 满分网
甲题:(1)若方程有两个不相等的实数根,则根的判别式△=b2-4ac>0,建立关于k的不等式,即可求出k的取值范围. (2)利用根与系数的关系,用含有k是式子表达出两根和、两根积,代入所给方程,即可确定k的值,进而求出所求代数式的值. 乙题:(1)由于ABCD为正方形,所以AD=AB=DC=BC,∠A=∠D=90°,所以AE=ED,所以,又因为DF=DC,所以,所以,所以△ABE∽△DEF. (2)由于ABCD为正方形,所以ED∥BG,所以=,又因为DF=,正方形的边长为4,所以ED=2,CG=6,所以BG=BC+CG=10. 甲题: 【解析】 (1)∵方程x2+(2k-3)x+k2=0有两个不相等的实数根, ∴△>0,即(2K-3)2-4×1×K2>0, 解得:k<; (2)由根与系数的关系得:α+β=-(2k-3),αβ=k2, ∵α+β+αβ=6, ∴k2-2k+3-6=0, 解得k=3或k=-1, 由(1)可知:k=3不合题意,舍去. ∴k=-1, ∴α+β=5,αβ=1 故(α-β)2+3αβ-5=(α+β)2-αβ-5=19. 乙题: (1)证明:∵ABCD为正方形, ∴AD=AB=DC=BC,∠A=∠D=90°, ∵AE=ED, ∴, 又∵DF=DC, ∴, ∴, ∴△ABE∽△DEF. (2)【解析】 ∵ABCD为正方形, ∴ED∥BG,∴=, 又∵DF=正方形的边长为4, ∴ED=2,CG=6, BG=BC+CG=10.
复制答案
考点分析:
相关试题推荐
(课改区)下面方格中是美丽可爱的小金鱼,在方格中分别画出原图形向右平移五个格和把原图形以点A为旋转中心顺时针方向旋转90°得到的小金鱼(只要求画出平移、旋转后的图形,不要求写出作图步骤和过程).
若每个小方格的边长均为1cm,则小金鱼所占的面积为______cm2.(直接写出结果)
(非课改区)已知关于x的方程kx2+2(k+1)x+(k-1)=0
(1)若此方程有两个实数根(包括重根的情况),求k的取值范围;
(2)k为何值时,此方程的两根之和等于两根之积.

manfen5.com 满分网 查看答案
如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.
(1)求证:四边形AECG是平行四边形;
(2)若AB=4cm,BC=3cm,求线段EF的长.

manfen5.com 满分网 查看答案
如图,在直角坐标系xOy中,Rt△OAB和Rt△OCD的直角顶点A,C始终在x轴的正半轴上,B,D在第一象限内,点B在直线OD上方,OC=CD,OD=2,M为OD的中点,AB与OD相交于E,当点B位置变manfen5.com 满分网化时,Rt△OAB的面积恒为manfen5.com 满分网
试解决下列问题:
(1)点D坐标为( );
(2)设点B横坐标为t,请把BD长表示成关于t的函数关系式,并化简;
(3)等式BO=BD能否成立?为什么?
(4)设CM与AB相交于F,当△BDE为直角三角形时,判断四边形BDCF的形状,并证明你的结论.
查看答案
已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.试问:k取何值时,△ABC是以BC为斜边的直角三角形?
查看答案
已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程x2-4x+b=0有两个相等的实数根,试判断△ABC的形状.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.