满分5 > 初中数学试题 >

已知,如图,AD为Rt△ABC斜边BC上的高,点E为DA延长线上一点,连接BE,...

已知,如图,AD为Rt△ABC斜边BC上的高,点E为DA延长线上一点,连接BE,过点C作CF⊥BE于点F,交AB、AD于M、N两点.
(1)若线段AM、AN的长是关于x的一元二次方程x2-2mx+n2-mn+manfen5.com 满分网m2=0的两个实数根,求证:AM=AN;
(2)若AN=manfen5.com 满分网,DN=manfen5.com 满分网,求DE的长;
(3)若在(1)的条件下,S△AMN:S△ABE=9:64,且线段BF与EF的长是关于y的一元二次方程5y2-16ky+10k2+5=0的两个实数根,求BC的长.

manfen5.com 满分网
(1)根据根的判别式△=0,判断出AM=AN, (2)判断出△ADC∽△BDA,△ADC∽△BDA,利用相似三角形的性质解答, (3)根据面积比等于相似比的平方解答. (1)证明:△=(-2m)2-4(n2-mn+m2)=-(m-2n)2≥0, ∴(m-2n)2≤0, ∴m-2n=0, ∴△=0 ∴一元二次方程x2-2mx+n2-mn+m2=0有两个相等实根, ∴AM=AN. (2)【解析】 ∵∠BAC=90°,AD⊥BC, ∴∠ADC=∠ADB=90°, ∠DAC=∠DBA, ∴△ADC∽△BDA, ∴=, ∴AD2=BD•DC, ∵CF⊥BE, ∴∠FCB+∠EBD=90°, ∵∠E+∠EBD=90°, ∴∠E=∠FCB, ∵∠NDC=∠EDB=90°, ∴△EBD∽△CND, ∴△ADC∽△BDA, ∴=, ∴BD•DC=ED•DN, ∴AD2=ED•DN, ∵AN=,DN=, ∴AD=DN+AN=3, ∴32=DE, ∴DE=8. (3)【解析】 由(1)知AM=AN, ∴∠AMN=∠ANM ∵∠AMN+∠CAN=90°,∠DNC+∠NCD=90°, ∴∠ACM=∠NCD ∵∠BMF+∠FBM=90°,∠AMC+∠ACM=90°, ∴∠ACM=∠FBM 由(2)可知∠E=∠FCB, ∴∠ABE=∠E, ∴AB=AE 过点M作MG⊥AN于点G 由MG∥BD得=, ∴===, ∴=, ∴==, 过点A作AH⊥EF于点H, 由AH∥FN, 得==, 设EH=8a,则FH=3a, ∵AE=AB, ∴BH=HE=8a, ∴BF=5a,EF=11a, 由根与系数关系得,, 解得:a=±, ∵a>0,a=, ∴BF=, 由∠ACM=∠MCB,∠DAC=∠DBA可知△ACN∽△BCM, ∴== 设AC=3b,则BC=5b 在Rt△ABC中,有AB=4b. ∴AM=. 在Rt△ACM中,有MC= 由△ACM∽△FCB得,∴, ∴BC=5.
复制答案
考点分析:
相关试题推荐
本题为选做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.
甲题:关于x的一元二次方程x2+(2k-3)x+k2=0有两个不相等的实数根α、β.
(1)求k的取值范围;
(2)若α+β+αβ=6,求(α-β)2+3αβ-5的值.
乙题:如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=manfen5.com 满分网DC,连接EF并延长交BC的延长线于点G
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
manfen5.com 满分网
查看答案
(课改区)下面方格中是美丽可爱的小金鱼,在方格中分别画出原图形向右平移五个格和把原图形以点A为旋转中心顺时针方向旋转90°得到的小金鱼(只要求画出平移、旋转后的图形,不要求写出作图步骤和过程).
若每个小方格的边长均为1cm,则小金鱼所占的面积为______cm2.(直接写出结果)
(非课改区)已知关于x的方程kx2+2(k+1)x+(k-1)=0
(1)若此方程有两个实数根(包括重根的情况),求k的取值范围;
(2)k为何值时,此方程的两根之和等于两根之积.

manfen5.com 满分网 查看答案
如图,ABCD是矩形纸片,翻折∠B,∠D,使BC,AD恰好落在AC上.设F,H分别是B,D落在AC上的两点,E,G分别是折痕CE,AG与AB,CD的交点.
(1)求证:四边形AECG是平行四边形;
(2)若AB=4cm,BC=3cm,求线段EF的长.

manfen5.com 满分网 查看答案
如图,在直角坐标系xOy中,Rt△OAB和Rt△OCD的直角顶点A,C始终在x轴的正半轴上,B,D在第一象限内,点B在直线OD上方,OC=CD,OD=2,M为OD的中点,AB与OD相交于E,当点B位置变manfen5.com 满分网化时,Rt△OAB的面积恒为manfen5.com 满分网
试解决下列问题:
(1)点D坐标为( );
(2)设点B横坐标为t,请把BD长表示成关于t的函数关系式,并化简;
(3)等式BO=BD能否成立?为什么?
(4)设CM与AB相交于F,当△BDE为直角三角形时,判断四边形BDCF的形状,并证明你的结论.
查看答案
已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.试问:k取何值时,△ABC是以BC为斜边的直角三角形?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.