满分5 > 初中数学试题 >

如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4...

如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合),连接DP,作PQ⊥DP,使得PQ交射线BC于点E,设AP=x.
(1)当x为何值时,△APD是等腰三角形;
(2)若设BE=y,求y关于x的函数关系式;
(3)若BC的长可以变化,是否存在点P,使得PQ经过点C?若不存在,请说明理由,若存在并直接写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C.
manfen5.com 满分网
1、过D点作DH⊥AB于H,则四边形DHBC为矩形,在Rt△AHD中,由勾股定理可求得DH、AD、PH的值,若△ADP为等腰三角形,则分三种情况:①当AP=AD时,x=AP=AD,②当AD=PD时,有AH=PH,故x=AH+PH,③当AP=PD时,则在Rt△DPH中,由勾股定理可求得DP的值,有x=AP=DP. 2、易证:△DPH∽△PEB⇒,即,故可求得y与x的关系式. 3、利用△DPH∽△PEB,得出=,进而利用根的判别式和一元二次不等式解集得出即可. 【解析】 (1)过D点作DH⊥AB于H,则四边形DHBC为矩形, ∴DH=BC=4,HB=CD=6. ∴AH=2,AD=2. ∵AP=x, ∴PH=x-2, 情况①:当AP=AD时,即x=2. 情况②:当AD=PD时,则AH=PH. ∴2=x-2,解得x=4. 情况③:当AP=PD时, 则Rt△DPH中,x2=42+(x-2)2,解得x=5. ∵2<x<8, ∴当x为2、4、5时,△APD是等腰三角形. (2)∵∠DPE=∠DHP=90°, ∴∠DPH+∠EPB=∠DPH+∠HDP=90°. ∴∠HDP=∠EPB. 又∵∠DHP=∠B=90°, ∴△DPH∽△PEB. ∴, ∴. 整理得:y=(x-2)(8-x)=-x2+x-4. (3)存在. 设BC=a,则由(2)得△DPH∽△PEB, ∴=, ∴y=, 当y=a时, (8-x)(x-2)=a2 x2-10x+(16+a2)=0, ∴△=100-4(16+a2), ∵△≥0, ∴100-64-4a2≥0, 4a2≤36, 又∵a>0, ∴a≤3, ∴0<a≤3, ∴满足0<BC≤3时,存在点P,使得PQ经过C.
复制答案
考点分析:
相关试题推荐
已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程x2-4x+b=0有两个相等的实数根,试判断△ABC的形状.
查看答案
解方程:manfen5.com 满分网
查看答案
已知方程5x2+kx-10=0的一个根是-5,求它的另一个根及k的值.
查看答案
(1)已知一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2,则x1=______
查看答案
已知关于x的一元二次方程(k+4)x2+3x+k2+3k-4=0的一个根为0.求k的值及另一个根.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.