满分5 > 初中数学试题 >

如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次...

如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.
(1)求sin∠ABC的值;
(2)若E为x轴上的点,且S△AOE=manfen5.com 满分网,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)求得一元二次方程的两个根后,判断出OA、OB长度,根据勾股定理求得AB长,那么就能求得sin∠ABC的值. (2)易得到点D的坐标为(6,4),还需求得点E的坐标,OA之间的距离是一定的,那么点E的坐标可能在点O的左边,也有可能在点O的右边.根据所给的面积可求得点E的坐标,把A、E代入一次函数解析式即可.然后看所求的两个三角形的对应边是否成比例,成比例就是相似三角形. (3)根据菱形的性质,分AC与AF是邻边并且点F在射线AB上与射线BA上两种情况,以及AC与AF分别是对角线的情况分别进行求解计算. 【解析】 (1)解x2-7x+12=0,得x1=4,x2=3. ∵OA>OB ∴OA=4,OB=3. 在Rt△AOB中,由勾股定理有AB==5, ∴sin∠ABC=. (2)∵点E在x轴上,S△AOE=,即AO×OE=, 解得OE=.∴E(,0)或E(-,0). 由已知可知D(6,4),设yDE=kx+b, 当E(,0)时有, 解得. ∴yDE=x-. 同理E(-,0)时,yDE=. 在△AOE中,∠AOE=90°,OA=4,OE=; 在△AOD中,∠OAD=90°,OA=4,OD=6; ∵, ∴△AOE∽△DAO. (3)根据计算的数据,OB=OC=3, ∴AO平分∠BAC, ①AC、AF是邻边,点F在射线AB上时,AF=AC=5, 所以点F与B重合, 即F(-3,0), ②AC、AF是邻边,点F在射线BA上时,M应在直线AD上,且FC垂直平分AM, 点F(3,8). ③AC是对角线时,做AC垂直平分线L,AC解析式为y=-x+4,直线L过(,2),且k值为(平面内互相垂直的两条直线k值乘积为-1), L解析式为y=x+,联立直线L与直线AB求交点, ∴F(-,-), ④AF是对角线时,过C做AB垂线,垂足为N,根据等积法求出CN=,勾股定理得出,AN=,做A关于N的对称点即为F,AF=,过F做y轴垂线,垂足为G,FG=×=, ∴F(-,). 综上所述,满足条件的点有四个:F1(3,8);F2(-3,0); F3(-,-);F4(-,).
复制答案
考点分析:
相关试题推荐
比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴而行,到相距16米的银树下参加探讨环境保护的微型动物首脑会议.蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后,提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达.已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度.
查看答案
近年来,由于受国际石油市场的影响,汽油价格不断上涨,请你根据下面的信息,帮小明计算今年5月份汽油的价格.

manfen5.com 满分网 查看答案
《中华人民共和国道路交通安全法实施条例》中规定:超速行驶属违法行为.为确保行车安全,一段高速公路全程限速110千米/时(即每一时刻的车速都不能超过110千米/时.以下是张师傅和李师傅行驶完这段全程为400千米的高速公路时的对话片断.张:“你的车速太快了,平均每小时比我多跑20千米,少用我一个小时就跑完了全程,还是慢点.”李:“虽然我的时速快,但最大时速不超过我平均时速的10%,可没有超速违法啊.”李师傅超速违法吗?为什么?
查看答案
某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒.节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.
查看答案
我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用manfen5.com 满分网小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.