某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:
年 度 | 2006 | 2007 | 2008 | 2009 |
投入技改资金x(万元) | 2.5 | 3 | 4 | 4.5 |
产品成本y(万元/件) | 7.2 | 6 | 4.5 | 4 |
(1)请你认真分析表中数据,从你所学习过的一次函数、二次函数和反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其它函数的理由,并求出它的解析式;
(2)按照这种变化规律,若2010年已投入技改资金5万元.
①预计生产成本每件比2009年降低多少万元?
②如果打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)
考点分析:
相关试题推荐
一定质量的气体,当温度不变时,气体的压强p(Pa)是气体体积V(m
3)的反比例函数.已
知当气体体积为1 m
3时,气体的压强为9.6×10
4Pa.
(1)求p与V之间的函数关系式;
(2)要使气体的压强不大于1.4×10
5Pa,气体的体积应不小于多少立方米?(精确到0.1 m
3)
查看答案
某人采用药熏法进行室内消毒,已知药物燃烧时室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图所示),现测得药物10分钟燃完,此时室内空气中每立方米的含药量为8毫克,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y与x的函数关系式为______,自变量x的取值范围是______;药物燃烧后,y与x的函数关系式为______.
(2)研究表明,当空气中每立方米的含药量低于2毫克时,人方可进入室内,那么从消毒开始,至少需要经过______分钟后,人才可以回到室内.
(3)当空气中每立方米的含药量不低于5毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效,为什么?
查看答案
某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干块木块,构筑成一条临时近道.木板对地面的压强P(Pa)是木板面积S(m
2)的反比例函数,其图象如下图所示.
(1)请直接写出这一函数表达式和自变量取值范围;
(2)当木板面积为0.2m
2时,压强是多少?
(3)如果要求压强不超过6000Pa,木板的面积至少要多大?
查看答案
如图,学校生物兴趣小组的同学们用围栏围了一个面积为24平方米的矩形饲养场地ABCD.设BC为x米,AB为y米.
(1)求y与x的函数关系式;
(2)延长BC至E,使CE比BC少1米,围成一个新的矩形ABEF,结果场地的面积增加了16平方米,求BC的长.
查看答案
请你举出一个生活中能用反比例函数关系描述的实例,写出其函数表达式,并画出函数图象.
举例:
函数表达式:
查看答案