满分5 > 初中数学试题 >

已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比...

已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连接BO,若S△AOB=4.
(1)求该反比例函数的解析式和直线AB的解析式;
(2)若直线AB与y轴的交点为C,求△OCB的面积.

manfen5.com 满分网
(1)先由A(-2,0),得OA=2,点B(2,n),S△AOB=4,得OA•n=4,n=4,则点B的坐标是(2,4),把点B(2,4)代入反比例函数的解析式为y=,可得反比例函数的解析式为:y=;再把A(-2,0)、B(2,4)代入直线AB的解析式为y=kx+b可得直线AB的解析式为y=x+2. (2)把x=0代入直线AB的解析式y=x+2得y=2,即OC=2,可得S△OCB=OC×2=×2×2=2. 【解析】 (1)由A(-2,0),得OA=2; ∵点B(2,n)在第一象限内,S△AOB=4, ∴OA•n=4; ∴n=4; ∴点B的坐标是(2,4); 设该反比例函数的解析式为y=(a≠0), 将点B的坐标代入,得4=, ∴a=8; ∴反比例函数的解析式为:y=; 设直线AB的解析式为y=kx+b(k≠0), 将点A,B的坐标分别代入,得, 解得; ∴直线AB的解析式为y=x+2; (2)在y=x+2中,令x=0,得y=2. ∴点C的坐标是(0,2), ∴OC=2; ∴S△OCB=OC×2=×2×2=2.
复制答案
考点分析:
相关试题推荐
已知:正比例函数y=k1x的图象与反比例函数manfen5.com 满分网(x>0)的图象交于点M(a,1),MN⊥x轴于点N(如图),若△OMN的面积等于2,求这两个函数的解析式.

manfen5.com 满分网 查看答案
某小型开关厂今年准备投入一定的经费用于现有生产设备的改造以提高经济效益.通过测算:今年开关的年产量y(万只)与投入的改造经费x(万元)之间满足3-y与x+1成反比例,且当改造经费投入1万元时,今年的年产量是2万只.
(1)求年产量y(万只)与改造经费x(万元)之间的函数解析式.(不要求写出x的取值范围)
(2)已知每生产1万只开关所需要的材料费是8万元.除材料费外,今年在生产中,全年还需支付出2万元的固定费用.
①求平均每只开关所需的生产费用为多少元?(用含y的代数式表示)
(生产费用=固定费用+材料费)
②如果将每只开关的销售价定位“平均每只开关的生产费用的1.5倍”与“平均每只开关所占改造费用的一半”之和,那么今年生产的开关正好销完.问今年需投入多少改造经费,才能使今年的销售利润为9.5万元?
(销售利润=销售收入一生产费用-改造费用)
查看答案
你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)s(mm2)的反比例函数,其图象如图所示.
(1)写出y与s的函数关系式;
(2)求当面条粗1.6mm2时,面条的总长度是多少米?

manfen5.com 满分网 查看答案
制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.
(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?

manfen5.com 满分网 查看答案
某市城建部门经过长期市场调查发现,该市年新建商品房面积P(万平方米)与市场新房均价x(千元/平方米)存在函数关系P=25x;年新房销售面积Q(万平方米)与市场新房均价x(千元/平方米)的函数关系为
Q=manfen5.com 满分网-10;
(1)如果年新建商品房的面积与年新房销售面积相等,求市场新房均价和年新房销售总额;
(2)在(1)的基础上,如果市场新房均价上涨1千元,那么该市年新房销售总额是增加还是减少?变化了多少?结合年新房销售总额和积压面积的变化情况,请你提出一条合理化的建议.(字数不超过50)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.