满分5 > 初中数学试题 >

如图,一次函数y=kx+b的图象与反比例函数的图象交于点A﹙-2,-5﹚,C﹙5...

如图,一次函数y=kx+b的图象与反比例函数manfen5.com 满分网的图象交于点A﹙-2,-5﹚,C﹙5,n﹚,交y轴于点B,交x轴于点D.
(1)求反比例函数manfen5.com 满分网和一次函数y=kx+b的表达式;
(2)连接OA,OC,求△AOC的面积.

manfen5.com 满分网
(1)由反比例函数的图象经过点A﹙-2,-5﹚可得反比例函数的表达式, 又点C﹙5,n﹚在反比例函数的图象上可得C的坐标为﹙5,2﹚,而一次函数的图象经过点A、C, 将这两个点的坐标代入y=kx+b,可得所求一次函数的表达式为y=x-3. (2)把x=0代入一次函数y=x-3可得B点坐标为﹙0,-3﹚即OB=3又A点的横坐标为-2,C点的横坐标为5, 可得S△AOC=S△AOB+S△BOC=. 【解析】 (1)∵反比例函数的图象经过点A﹙-2,-5﹚, ∴m=(-2)×(-5)=10 ∴反比例函数的表达式为.(2分) ∵点C﹙5,n﹚在反比例函数的图象上, ∴, ∴C的坐标为﹙5,2﹚.(3分) ∵一次函数的图象经过点A,C,将这两个点的坐标代入y=kx+b, 得,解得(5分) ∴所求一次函数的表达式为y=x-3.(6分) (2)∵一次函数y=x-3的图象交y轴于点B, ∴B点坐标为﹙0,-3﹚(7分) ∴OB=3 ∵A点的横坐标为-2,C点的横坐标为5, ∴S△AOC=S△AOB+S△BOC=.(10分)
复制答案
考点分析:
相关试题推荐
如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=manfen5.com 满分网的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)求不等式kx+b-manfen5.com 满分网<0的解集.(直接写出答案)

manfen5.com 满分网 查看答案
如图,一次函数y=kx+2的图象与反比例函数y=manfen5.com 满分网的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,manfen5.com 满分网=manfen5.com 满分网
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

manfen5.com 满分网 查看答案
已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连接BO,若S△AOB=4.
(1)求该反比例函数的解析式和直线AB的解析式;
(2)若直线AB与y轴的交点为C,求△OCB的面积.

manfen5.com 满分网 查看答案
已知:正比例函数y=k1x的图象与反比例函数manfen5.com 满分网(x>0)的图象交于点M(a,1),MN⊥x轴于点N(如图),若△OMN的面积等于2,求这两个函数的解析式.

manfen5.com 满分网 查看答案
某小型开关厂今年准备投入一定的经费用于现有生产设备的改造以提高经济效益.通过测算:今年开关的年产量y(万只)与投入的改造经费x(万元)之间满足3-y与x+1成反比例,且当改造经费投入1万元时,今年的年产量是2万只.
(1)求年产量y(万只)与改造经费x(万元)之间的函数解析式.(不要求写出x的取值范围)
(2)已知每生产1万只开关所需要的材料费是8万元.除材料费外,今年在生产中,全年还需支付出2万元的固定费用.
①求平均每只开关所需的生产费用为多少元?(用含y的代数式表示)
(生产费用=固定费用+材料费)
②如果将每只开关的销售价定位“平均每只开关的生产费用的1.5倍”与“平均每只开关所占改造费用的一半”之和,那么今年生产的开关正好销完.问今年需投入多少改造经费,才能使今年的销售利润为9.5万元?
(销售利润=销售收入一生产费用-改造费用)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.