满分5 > 初中数学试题 >

如图,直线y=x+m与双曲线y=相交于A(2,1)、B两点. (1)求m及k的值...

如图,直线y=x+m与双曲线y=manfen5.com 满分网相交于A(2,1)、B两点.
(1)求m及k的值;
(2)不解关于x、y的方程组直接写出点B的坐标;
(3)直线y=-2x+4m经过点B吗?请说明理由.

manfen5.com 满分网
(1)把点A的坐标分别代入解析式y=x+m与y=,即可求出m及k的值; (2)观察直线与双曲线在第三象限内的交点,即可得出点B的坐标; (3)把点B的横坐标代入直线的解析式y=-2x+4m,算出对应的y值,然后与点B的纵坐标比较,即可得出结果. 【解析】 (1)∵点A(2,1)在直线y=x+m上, ∴1=2+m, ∴m=-1; ∵点A(2,1)在双曲线y=上, ∴k=2×1=2. (2)观察图象,可知直线与双曲线在第三象限内交于点(-1,-2), ∴点B的坐标为(-1,-2); (3)∵m=-1,∴直线y=-2x+4m即直线y=-2x-4, 当x=-1时,y=-2×(-1)-4=-2, ∴直线y=-2x+4m经过点B.
复制答案
考点分析:
相关试题推荐
如图,已知:一次函数:y=-x+4的图象与反比例函数:manfen5.com 满分网(x>0)的图象分别交于A、B两点,点M是一次函数图象在第一象限部分上的任意一点,过M分别向x轴、y轴作垂线,垂足分别为M1、M2,设矩形MM1OM2的面积为S1;点N为反比例函数图象上任意一点,过N分别向x轴、y轴作垂线,垂足分别为N1、N2,设矩形NN1ON2的面积为S2
(1)若设点M的坐标为(x,y),请写出S1关于x的函数表达式,并求x取何值时,S1的最大值;
(2)观察图形,通过确定x的取值,试比较S1、S2的大小.

manfen5.com 满分网 查看答案
如图,四边形OABC是面积为4的正方形,函数manfen5.com 满分网(x>0)的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数manfen5.com 满分网(x>0)的图象交于点E、F,求线段EF所在直线的解析式.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,已知在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=manfen5.com 满分网(m≠0)的图象相交于A、B两点,且点B的纵坐标为-manfen5.com 满分网,过点A作AC⊥x轴于点C,AC=1,OC=2.
求:(1)求反比例函数的解析式;
(2)求一次函数的解析式.
查看答案
如图,一次函数y=kx+b的图象与反比例函数manfen5.com 满分网的图象交于点A﹙-2,-5﹚,C﹙5,n﹚,交y轴于点B,交x轴于点D.
(1)求反比例函数manfen5.com 满分网和一次函数y=kx+b的表达式;
(2)连接OA,OC,求△AOC的面积.

manfen5.com 满分网 查看答案
如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=manfen5.com 满分网的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)求不等式kx+b-manfen5.com 满分网<0的解集.(直接写出答案)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.