满分5 > 初中数学试题 >

如图,已知正比例函数y=ax(a≠0)的图象与反比例函致(k≠0)的图象的一个交...

如图,已知正比例函数y=ax(a≠0)的图象与反比例函致manfen5.com 满分网(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍?

manfen5.com 满分网
(1)把A的坐标代入反比例函数解析式,即可得到关于k的方程,从而求得k的值.得到反比例函数解析式以及A的坐标,再利用待定系数法即可求得正比例函数解析式; (2)证明△COE与△ODE相似,求得相似比,根据相似三角形面积的比等于相似比的平方即可求解. 【解析】 (1)由图知k>0,a>0, ∵点A(-1,2-k2)在图象上, ∴2-k2=-k,即k2-k-2=0,解得k=2(k=-1舍去), 得反比例函数为. 此时A(-1,-2),代入y=ax,解得a=2, ∴正比例函数为y=2x. (2)过点B作BF⊥x轴于F. ∵A(-1,-2)与B关于原点对称, ∴B(1,2),即OF=1,BF=2,得OB=. 由图,易知Rt△OBF∽Rt△OCD, ∴OB:OC=OF:OD,而OD== ∴OC==2.5. 由Rt△COE∽Rt△ODE, 得. 所以△COE的面积是△ODE面积的5倍.
复制答案
考点分析:
相关试题推荐
如图,直线y=x+m与双曲线y=manfen5.com 满分网相交于A(2,1)、B两点.
(1)求m及k的值;
(2)不解关于x、y的方程组直接写出点B的坐标;
(3)直线y=-2x+4m经过点B吗?请说明理由.

manfen5.com 满分网 查看答案
如图,已知:一次函数:y=-x+4的图象与反比例函数:manfen5.com 满分网(x>0)的图象分别交于A、B两点,点M是一次函数图象在第一象限部分上的任意一点,过M分别向x轴、y轴作垂线,垂足分别为M1、M2,设矩形MM1OM2的面积为S1;点N为反比例函数图象上任意一点,过N分别向x轴、y轴作垂线,垂足分别为N1、N2,设矩形NN1ON2的面积为S2
(1)若设点M的坐标为(x,y),请写出S1关于x的函数表达式,并求x取何值时,S1的最大值;
(2)观察图形,通过确定x的取值,试比较S1、S2的大小.

manfen5.com 满分网 查看答案
如图,四边形OABC是面积为4的正方形,函数manfen5.com 满分网(x>0)的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数manfen5.com 满分网(x>0)的图象交于点E、F,求线段EF所在直线的解析式.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,已知在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=manfen5.com 满分网(m≠0)的图象相交于A、B两点,且点B的纵坐标为-manfen5.com 满分网,过点A作AC⊥x轴于点C,AC=1,OC=2.
求:(1)求反比例函数的解析式;
(2)求一次函数的解析式.
查看答案
如图,一次函数y=kx+b的图象与反比例函数manfen5.com 满分网的图象交于点A﹙-2,-5﹚,C﹙5,n﹚,交y轴于点B,交x轴于点D.
(1)求反比例函数manfen5.com 满分网和一次函数y=kx+b的表达式;
(2)连接OA,OC,求△AOC的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.