满分5 > 初中数学试题 >

附加题:已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,...

附加题:已知:如图,正比例函数y=ax的图象与反比例函数y=manfen5.com 满分网的图象交于点A(3,2)
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值;
(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MN∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.

manfen5.com 满分网
(1)将A(3,2)分别代入y=,y=ax中,得ak的值,进而可得正比例函数和反比例函数的表达式; (2)观察图象,得在第一象限内,当0<x<3时,反比例函数的图象在正比例函数的上方;故反比例函数的值大于正比例函数的值; (3)有S△OMB=S△OAC=×|k|=3,可得S矩形OBDC为12;即OC•OB=12;进而可得mn的值,故可得BM与DM的大小;比较可得其大小关系. 【解析】 (1)将A(3,2)分别代入y=,y=ax中,得:2=,3a=2 ∴k=6,a=(2分) ∴反比例函数的表达式为:y=(3分) 正比例函数的表达式为y=x(4分) (2)观察图象,得在第一象限内,当0<x<3时,反比例函数的值大于正比例函数的值.(6分) (3)BM=DM(7分) 理由:∵MN∥x轴,AC∥y轴, ∴四边形OCDB是平行四边形, ∵x轴⊥y轴, ∴▱OCDB是矩形. M和A都在双曲线y=上, ∴BM×OB=6,OC×AC=6, ∴S△OMB=S△OAC=×|k|=3,又S四边形OADM=6, ∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12, 即OC•OB=12 ∵OC=3 ∴OB=4(8分) 即n=4 ∴m= ∴MB=,MD=3-= ∴MB=MD(9分).
复制答案
考点分析:
相关试题推荐
如图,已知正比例函数y=ax(a≠0)的图象与反比例函致manfen5.com 满分网(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍?

manfen5.com 满分网 查看答案
如图,直线y=x+m与双曲线y=manfen5.com 满分网相交于A(2,1)、B两点.
(1)求m及k的值;
(2)不解关于x、y的方程组直接写出点B的坐标;
(3)直线y=-2x+4m经过点B吗?请说明理由.

manfen5.com 满分网 查看答案
如图,已知:一次函数:y=-x+4的图象与反比例函数:manfen5.com 满分网(x>0)的图象分别交于A、B两点,点M是一次函数图象在第一象限部分上的任意一点,过M分别向x轴、y轴作垂线,垂足分别为M1、M2,设矩形MM1OM2的面积为S1;点N为反比例函数图象上任意一点,过N分别向x轴、y轴作垂线,垂足分别为N1、N2,设矩形NN1ON2的面积为S2
(1)若设点M的坐标为(x,y),请写出S1关于x的函数表达式,并求x取何值时,S1的最大值;
(2)观察图形,通过确定x的取值,试比较S1、S2的大小.

manfen5.com 满分网 查看答案
如图,四边形OABC是面积为4的正方形,函数manfen5.com 满分网(x>0)的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数manfen5.com 满分网(x>0)的图象交于点E、F,求线段EF所在直线的解析式.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,已知在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=manfen5.com 满分网(m≠0)的图象相交于A、B两点,且点B的纵坐标为-manfen5.com 满分网,过点A作AC⊥x轴于点C,AC=1,OC=2.
求:(1)求反比例函数的解析式;
(2)求一次函数的解析式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.