满分5 > 初中数学试题 >

如图,P1是反比例函数y=(k>0)在第一象限图象上的一点,点A1的坐标为(2,...

如图,P1是反比例函数y=manfen5.com 满分网(k>0)在第一象限图象上的一点,点A1的坐标为(2,0).
(1)当点P1的横坐标逐渐增大时,△P1OA1的面积将如何变化?
(2)若△P1OA1与△P2A1A2均为等边三角形,求此反比例函数的解析式及A2点的坐标.

manfen5.com 满分网
(1)设P1(a,b),根据反比例函数的图象性质,可知y随x的增大而减小.又△P1OA1的面积=×0A1×b=b.故当点P1的横坐标逐渐增大时,△P1OA1的面积将逐渐减小. (2)由于△P1OA1为等边三角形,作P1C⊥OA1,垂足为C,由等边三角形的性质及勾股定理可求出点P1的坐标,根据点P1是反比例函数y=图象上的一点,利用待定系数法求出此反比例函数的解析式;作P2D⊥A1A2,垂足为D.设A1D=a,由于△P2A1A2为等边三角形,由等边三角形的性质及勾股定理,可用含a的代数式分别表示点P2的横、纵坐标,再代入反比例函数的解析式中,求出a的值,进而得出A2点的坐标. 【解析】 (1)过P1作P1C⊥OA1,垂足为C, 设P1(a,b), ∵P1在第一象限, ∴△P1OA1的面积=×0A1×b=b. 又∵当k>0时,在每一个象限内,y随x的增大而减小. 故当点P1的横坐标逐渐增大时,△P1OA1的面积将逐渐减小. (2)因为△P1OA1为边长是2的等边三角形, 所以OC=1,P1C=2×=, 所以P1(1,). 代入y=,得k=, 所以反比例函数的解析式为y=. 作P2D⊥A1A2,垂足为D. 设A1D=a, 则OD=2+a,P2D=a, 所以P2(2+a,a). ∵P2(2+a,a)在反比例函数的图象上, ∴代入y=,得(2+a)•a=, 化简得a2+2a-1=0 解得:a=-1±. ∵a>0, ∴a=-1+.∴A1A2=-2+2, ∴OA2=OA1+A1A2=2, 所以点A2的坐标为(2,0).
复制答案
考点分析:
相关试题推荐
如图,过点P(-4,3)作x轴,y轴的垂线,分别交x轴,y轴于A、B两点,交双曲线y=manfen5.com 满分网(k≥2)于E、F两点.
(1)点E的坐标是______,点F的坐标是______;(均用含k的式子表示)
(2)判断EF与AB的位置关系,并证明你的结论;
(3)记S=S△PEF-S△OEF,S是否有最小值?若有,求出其最小值;若没有,请你说明理由.

manfen5.com 满分网 查看答案
已知⊙O1的半径为R,周长为C.
(1)在⊙O1内任意作三条弦,其长分别是l1l2l3,求证:l1+l2+l3<C;
(2)如图,在直角坐标系xOy中,设⊙O1的圆心为O1(R,R).
①当直线l:y=x+b(b>0)与⊙O1相切时,求b的值;
②当反比例函数y=manfen5.com 满分网(k>0)的图象与⊙O1有两个交点时,求k的取值范围.

manfen5.com 满分网 查看答案
附加题:已知:如图,正比例函数y=ax的图象与反比例函数y=manfen5.com 满分网的图象交于点A(3,2)
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值;
(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MN∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.

manfen5.com 满分网 查看答案
如图,已知正比例函数y=ax(a≠0)的图象与反比例函致manfen5.com 满分网(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍?

manfen5.com 满分网 查看答案
如图,直线y=x+m与双曲线y=manfen5.com 满分网相交于A(2,1)、B两点.
(1)求m及k的值;
(2)不解关于x、y的方程组直接写出点B的坐标;
(3)直线y=-2x+4m经过点B吗?请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.