满分5 > 初中数学试题 >

如图,若反比例函数y=-与一次函数y=mx-2的图象都经过点A(a,2) (1)...

如图,若反比例函数y=-manfen5.com 满分网与一次函数y=mx-2的图象都经过点A(a,2)
(1)求A点的坐标及一次函数的解析式;
(2)设一次函数与反比例函数图象的另一交点为B,求B点坐标,并利用函数图象写出使一次函数的值小于反比例函数的值的x的取值范围.

manfen5.com 满分网
(1)把y=2代入反比例函数y=-可得x=-4,即A(-4,2);把A(-4,2)代入一次函数y=mx-2解得m=-1,可得一次函数y=mx-2为y=-x-2. (2)把反比例函数y=-代入一次函数y=-x-2即可得B(2,-4),一次函数的值小于反比例函数的值的x的取值范围根据图象即可求出-4<x<0或x>2. 【解析】 (1)把y=2代入反比例函数y=- ∴x=-4, ∴A(-4,2). 把A(-4,2)代入一次函数y=mx-2 解得m=-1 ∴一次函数y=mx-2为y=-x-2. (2)根据题意把反比例函数y=-代入一次函数y=-x-2 ∴和 ∴B(2,-4) 利用函数图象可得使一次函数的值小于反比例函数的值的x的取值范围是-4<x<0或x>2.
复制答案
考点分析:
相关试题推荐
已知反比例函数y=manfen5.com 满分网(m为常数)的图象经过点A(-1,6).
(1)求m的值;
(2)如图,过点A作直线AC与函数y=manfen5.com 满分网的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.

manfen5.com 满分网 查看答案
如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数manfen5.com 满分网(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;
(3)若反比例函数manfen5.com 满分网(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.

manfen5.com 满分网 查看答案
如图,直线y=k1x+b与反比例函数manfen5.com 满分网(x>0)的图象交于A(1,6),B(a,3)两点.
(1)求k1、k2的值.
(2)直接写出manfen5.com 满分网时x的取值范围;
(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.

manfen5.com 满分网 查看答案
如图,在直角坐标平面内,函数manfen5.com 满分网(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)当AD=BC时,求直线AB的函数解析式.

manfen5.com 满分网 查看答案
已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y=-manfen5.com 满分网的图象上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.
(1)如图所示,若反比例函数解析式为y=-manfen5.com 满分网,P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;M1的坐标是______
(2)请你通过改变P点坐标,对直线M1M的解析式y﹦kx+b进行探究可得k﹦______,若点P的坐标为(m,0)时,则b﹦______
(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.