●探究:
(1)在图中,已知线段AB,CD,其中点分别为E,F.
①若A(-1,0),B(3,0),则E点坐标为______;
②若C(-2,2),D(-2,-1),则F点坐标为______;
(2)在图中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程.
●归纳:
无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=______,y=______.(不必证明)
●运用:
在图中,一次函数y=x-2与反比例函数
的图象交点为A,B.
①求出交点A,B的坐标;
②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标.
考点分析:
相关试题推荐
如图,若反比例函数y=-
与一次函数y=mx-2的图象都经过点A(a,2)
(1)求A点的坐标及一次函数的解析式;
(2)设一次函数与反比例函数图象的另一交点为B,求B点坐标,并利用函数图象写出使一次函数的值小于反比例函数的值的x的取值范围.
查看答案
已知反比例函数y=
(m为常数)的图象经过点A(-1,6).
(1)求m的值;
(2)如图,过点A作直线AC与函数y=
的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.
查看答案
如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数
(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;
(3)若反比例函数
(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.
查看答案
如图,直线y=k
1x+b与反比例函数
(x>0)的图象交于A(1,6),B(a,3)两点.
(1)求k
1、k
2的值.
(2)直接写出
时x的取值范围;
(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.
查看答案
如图,在直角坐标平面内,函数
(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)当AD=BC时,求直线AB的函数解析式.
查看答案