满分5 > 初中数学试题 >

如图,一次函数y=kx+b的图象与反比例函数的图象交于A(-3,1),B(2,n...

如图,一次函数y=kx+b的图象与反比例函数manfen5.com 满分网的图象交于A(-3,1),B(2,n)两点,直线AB分交x轴、y轴于D,C两点.
(1)求上述反比例函数和一次函数的解析式;
(2)求manfen5.com 满分网的值.

manfen5.com 满分网
(1)反比例函数的图象经过点A(-3,1),代入解析式就得到反比例函数的解析式,再把B(2,n)代入反比例函数解析式就可以求出A的坐标,因而利用待定系数法就可以求出一次函数的解析式; (2)过点A作AE⊥x轴于点E.易证Rt△OCD∽Rt△EAD,则,易证. 【解析】 (1)把x=-3,y=1代入,得:m=-3. ∴反比例函数的解析式为. 把x=2,y=n代入得. 把x=-3,y=1;x=2,分别代入y=kx+b得, 解得, ∴一次函数的解析式为 (2)过点A作AE⊥x轴于点E. ∵A点的纵坐标为1, ∴AE=1. 由一次函数的解析式为得C点的坐标为, ∴. 在Rt△OCD和Rt△EAD中,∠COD=∠AED=90°,∠CDO=∠ADE, ∴Rt△OCD∽Rt△EAD. ∴=2.
复制答案
考点分析:
相关试题推荐
已知一次函数y1=ax+b的图象与反比例函数y2=manfen5.com 满分网的图象相交于A、B两点,坐标分别为(-2,4)、(4,-2).
(1)求两个函数的解析式;
(2)结合图象写出y1<y2时,x的取值范围;
(3)求△AOB的面积;
(4)是否存在一点P,使以点A﹑B﹑O﹑P为顶点的四边形为菱形?若存在,求出顶点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知反比例函数y=manfen5.com 满分网的图象经过点A(-manfen5.com 满分网,1).
(1)试确定此反比例函数的解析式;
(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;
(3)已知点P(m,manfen5.com 满分网m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是manfen5.com 满分网,设Q点的纵坐标为n,求n2-2manfen5.com 满分网n+9的值.
查看答案
●探究:
(1)在图中,已知线段AB,CD,其中点分别为E,F.
①若A(-1,0),B(3,0),则E点坐标为______
②若C(-2,2),D(-2,-1),则F点坐标为______
(2)在图中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程.
●归纳:
无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=______,y=______.(不必证明)
●运用:
在图中,一次函数y=x-2与反比例函数manfen5.com 满分网的图象交点为A,B.
①求出交点A,B的坐标;
②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标.
manfen5.com 满分网
查看答案
如图,若反比例函数y=-manfen5.com 满分网与一次函数y=mx-2的图象都经过点A(a,2)
(1)求A点的坐标及一次函数的解析式;
(2)设一次函数与反比例函数图象的另一交点为B,求B点坐标,并利用函数图象写出使一次函数的值小于反比例函数的值的x的取值范围.

manfen5.com 满分网 查看答案
已知反比例函数y=manfen5.com 满分网(m为常数)的图象经过点A(-1,6).
(1)求m的值;
(2)如图,过点A作直线AC与函数y=manfen5.com 满分网的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.