如图,点P是双曲线
(k
1<0,x<0)上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y=
(0<k
2<|k
1|)于E、F两点.
(1)图1中,四边形PEOF的面积S
1=______(用含k
1、k
2的式子表示);
(2)图2中,设P点坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记S
2=S
△PEF-S
△OEF,S
2是否有最小值?若有,求出其最小值;若没有,请说明理由.
考点分析:
相关试题推荐
已知:如图,在直角坐标系xOy中,Rt△OCD的一边OC在x轴上.∠C=90°,点D在第一象限,OC=3,DC=4,反比例函数的图象经过OD的中点A.
(1)求该反比例函数的解析式;
(2)若该反比例函数的图象与Rt△OCD的另一边DC交于点B,求过A、B两点的直线的解析式.
查看答案
如图,一次函数y=kx+b的图象与反比例函数
的图象交于A(-3,1),B(2,n)两点,直线AB分交x轴、y轴于D,C两点.
(1)求上述反比例函数和一次函数的解析式;
(2)求
的值.
查看答案
已知一次函数y
1=ax+b的图象与反比例函数y
2=
的图象相交于A、B两点,坐标分别为(-2,4)、(4,-2).
(1)求两个函数的解析式;
(2)结合图象写出y
1<y
2时,x的取值范围;
(3)求△AOB的面积;
(4)是否存在一点P,使以点A﹑B﹑O﹑P为顶点的四边形为菱形?若存在,求出顶点P的坐标;若不存在,请说明理由.
查看答案
已知反比例函数y=
的图象经过点A(-
,1).
(1)试确定此反比例函数的解析式;
(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;
(3)已知点P(m,
m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是
,设Q点的纵坐标为n,求n
2-2
n+9的值.
查看答案
●探究:
(1)在图中,已知线段AB,CD,其中点分别为E,F.
①若A(-1,0),B(3,0),则E点坐标为______;
②若C(-2,2),D(-2,-1),则F点坐标为______;
(2)在图中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程.
●归纳:
无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=______,y=______.(不必证明)
●运用:
在图中,一次函数y=x-2与反比例函数
的图象交点为A,B.
①求出交点A,B的坐标;
②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标.
查看答案