满分5 > 初中数学试题 >

如图,在平面直角坐标系中,A为y轴正半轴上一点,过A作x轴的平行线,交函数y=-...

如图,在平面直角坐标系中,A为y轴正半轴上一点,过A作x轴的平行线,交函数y=-manfen5.com 满分网(x<0)的图象于B,交函数y=manfen5.com 满分网(x>0)的图象于C,过C作y轴的平行线交BO的延长线于D.
(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;
(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;
(3)在(2)的条件下,求四边形AODC的面积.

manfen5.com 满分网
(1)根据点A的纵坐标是2,可以确定点B和点C的纵坐标,再进一步根据反比例函数的解析式求得点B和点C的横坐标,再进一步求得它们的长度之比; (2)和(1)的方法类似,在求平行于x轴的线段的长度的时候,要让右边的点的横坐标减去左边的点的横坐标; (3)根据(2)中的长度比,结合平行线分线段成比例定理求得该梯形的下底的长,再根据梯形的面积公式进行计算. 【解析】 (1)∵A(0,2),BC∥x轴, ∴B(-1,2),C(3,2), ∴AB=1,CA=3, ∴线段AB与线段CA的长度之比为; (2)∵B是函数y=-(x<0)的一点,C是函数y=(x>0)的一点, ∴B(-,a),C(,a), ∴AB=,CA=, ∴线段AB与线段CA的长度之比为; (3)∵=, ∴=, 又∵OA=a,CD∥y轴, ∴=, ∴CD=4a, ∴四边形AODC的面积为=(a+4a)×=15.
复制答案
考点分析:
相关试题推荐
已知A(-1,m)与B(2,m+3manfen5.com 满分网)是反比例函数manfen5.com 满分网图象上的两个点.
(1)求k的值;
(2)若点C(-1,0),则在反比例函数manfen5.com 满分网图象上是否存在点D,使得以A,B,C,D四点为顶点的四边形为梯形?若存在,求出点D的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,已知直线y=manfen5.com 满分网x与双曲线manfen5.com 满分网交于A,B两点,且点A的横坐标为4.
(1)求k的值;
(2)若双曲线manfen5.com 满分网上一点C的纵坐标为8,求△AOC的面积;
(3)过原点O的另一条直线l交双曲线manfen5.com 满分网于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.
查看答案
如图,一次函数y=kx+b的图象与反比例函数y=manfen5.com 满分网的图象交于A(-2,1),B(1,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.

manfen5.com 满分网 查看答案
如图,已知反比例函数manfen5.com 满分网的图象与一次函数y=k2x+b的图象交于A,B两点,A(1,n),B(-manfen5.com 满分网,-2).
(1)求反比例函数和一次函数的解析式;
(2)在x轴上是否存在点P,使△AOP为等腰三角形?若存在,请你直接写出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于点A,C,点A的坐标为(-manfen5.com 满分网,0),AC的延长线与⊙B的切线OD交于点D.
(1)求OC的长和∠CAO的度数;
(2)求过D点的反比例函数的表达式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.