满分5 > 初中数学试题 >

如图1,Rt△ABC中,∠C=90°,AC=12,BC=5,点M在边AB上,且A...

如图1,Rt△ABC中,∠C=90°,AC=12,BC=5,点M在边AB上,且AM=6.
(1)动点D在边AC上运动,且与点A,C均不重合,设CD=x.
①设△ABC与△ADM的面积之比为y,求y与x之间的函数关系式(写出自变量的取值范围);
②当x取何值时,△ADM是等腰三角形?写出你的理由.
(2)如图2,以图1中的为一组邻边的矩形中,动点在矩形边上运动一周,能使是M为顶角的等腰三角形共有多少个?(直接写结果,不要求说明理由)

manfen5.com 满分网
(1)△ABC的面积易求,△ADM的面积应利用相似比表示出AD及AD边上的高,然后求出面积比值,△ADM是等腰三角形,两腰是不确定的,所以应分AM=DM,AM=AD,DM=AD来分别讨论; (2)M为顶角,那么AM=DM,只需作出M为圆心,MA=6为半径的圆,看与矩形有几个交点即可. 【解析】 (1)①∵Rt△ABC中,∠C=90°,AC=12,BC=5, ∴S△ABC=30,AB=13, 过M作MH⊥AC于H,则MH∥BC, ∴, ∴MH=, ∵CD=x, ∴AD=12-x, ∴S△ADM=(12-x), ∴y=(0<x<12); ②(i)当AD=AM=6,即x=6时,△ADM为等腰三角形; (ii)当AM=MD时,AD=2AH. ∴AH==, ∴AD=, 即x=12-=时,△ADM为等腰三角形; (iii)当AD=MD时, ∵AD=12-x,AH=, ∴HD=-(12-x)=x-, ∵MH2+HD2=MD2, ∴()2+(x-)2=(12-x)2, 解得:x=时,△ADM为等腰三角形. (2)4个. (根据题意,以M为圆心,MA=6为半径作圆,与AC、AE、BE三边共有包括A点在内的5个交点,所以符合条件的等腰三角形共有4个)
复制答案
考点分析:
相关试题推荐
已知直线y=-x+2m+1与双曲线y=manfen5.com 满分网有两个不同的公共点A、B.
(1)求m的取值范围;
(2)点A、B能否关于原点中心对称?若能,求出此时m的值;若不能,说明理由.
查看答案
如图,已知反比例函数y=manfen5.com 满分网的图象经过点A(-manfen5.com 满分网,b),过点A作AB⊥x轴,垂足为点B,△AOB的面积为manfen5.com 满分网
(1)求k和b的值;
(2)若一次函数y=ax+1的图象经过点A,并且与x轴相交于点M,求OA:OM.

manfen5.com 满分网 查看答案
如图,将一块直角三角形纸板的直角顶点放在C(1,manfen5.com 满分网)处,两直角边分别与x,y轴平行,纸板的另两个顶点A,B恰好是直线y=kx+manfen5.com 满分网与双曲线y=manfen5.com 满分网(m>0)的交点.
(1)求m和k的值;
(2)设双曲线y=manfen5.com 满分网(m>0)在A,B之间的部分为L,让一把三角尺的直角顶点P在L上滑动,两直角边始终与坐标轴平行,且与线段AB交于M,N两点,请探究是否存在点P使得MN=manfen5.com 满分网AB,写出你的探究过程和结论.

manfen5.com 满分网 查看答案
如图,已知C、D是双曲线y=manfen5.com 满分网在第一象限分支上的两点,直线CD分别交x轴、y轴于A、B两点.设C(x1,y1)、D(x2,y2),连接OC、OD(O是坐标有点),若∠BOC=∠AOD=α,且tanα=manfen5.com 满分网,OC=manfen5.com 满分网
(1)求C、D的坐标和m的值;
(2)双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明,若不存在,说明理由.

manfen5.com 满分网 查看答案
如图,已知直线y1=x+m与x轴、y轴分别交于点A、B,与双曲线manfen5.com 满分网(x<0)分别交于点C、D,且C点的坐标为(-1,2).
(1)分别求出直线AB及双曲线的解析式;
(2)求出点D的坐标;
(3)利用图象直接写出:当x在什么范围内取值时,y1>y2

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.