满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=...

如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.
(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;
(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(1)中y与x之间的函数关系式还成立?试说明理由.

manfen5.com 满分网
(1)利用等腰三角形的性质得∠ABD=∠ACE=105°,利用等量代换求得∠CAE=∠ADB,故△ADB∽△EAC后,得,即所以y=; (2)要使y=,即成立,则要△ADB∽△EAC.由于∠ABD=∠ECA,故只须∠ADB=∠EAC,利用三角形的内角和和邻补角的概念求得∠EAC+∠BAD=β-α,∠ADB+∠BAD=∠ABC=90°-,所以只90°-=β-α,须即β-=90°. 【解析】 (1)在△ABC中,AB=AC=1,∠BAC=30°, ∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°, ∵∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB, ∴△ADB∽△EAC, ∴ 即,所以y=; (2)当α、β满足关系式β-时,函数关系式y=成立, 理由如下:∵β-=90°, ∴β-α=90°-. 又∵∠EAC=∠DAE-∠BAC-∠DAB=β-α-∠DAB, ∠ADB=∠ABC-∠DAB=90°--∠DAB, ∴∠ADB=∠EAC; 又∵∠ABD=∠ECA, ∴△ADB∽△EAC, ∴, ∴, ∴y=.
复制答案
考点分析:
相关试题推荐
已知y=y1-y2,y1与x成反比例,y2与(x-2)成正比例,并且当x=3时,y=5,当x=1时,y=-1;求y与x之间的函数关系式.
查看答案
已知y=y1+y2,y1与x+1成正比例,y2与x+1成反比例,当x=0时,y=-5;当x=2时,y=-7.
(1)求y与x的函数关系式;
(2)当y=5时,求x的值.
查看答案
一批零件300个,一个工人每小时做15个,用关系式表示人数x与完成任务所需的时间y之间的函数关系式为    查看答案
某食用油生产厂要制造一种容积为5升(1升=1立方分米)的圆柱形油桶,油桶的底面面积s与桶高h的函数关系式为    查看答案
若矩形的面积为6,则矩形的长y关于宽x(x>0)的函数关系式为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.