满分5 > 初中数学试题 >

已知:等腰三角形OAB在直角坐标系中的位置如图,点A的坐标为(),点B的坐标为(...

已知:等腰三角形OAB在直角坐标系中的位置如图,点A的坐标为(manfen5.com 满分网),点B的坐标为(-6,0).
(1)若三角形OAB关于y轴的轴对称图形是三角形OA′B′,请直接写出A、B的对称点A′、B′的坐标;
(2)若将三角形OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数y=manfen5.com 满分网的图象上,求a的值;
(3)若三角形OAB绕点O按逆时针方向旋转α度(0<α<90).
①当α=30°时点B恰好落在反比例函数y=manfen5.com 满分网的图象上,求k的值;
②问点A、B能否同时落在①中的反比例函数的图象上,若能,求出α的值;若不能,请说明理由.

manfen5.com 满分网
(1)关于y轴对称的点的坐标的特点,横坐标互为相反数,纵坐标相等,三角形OA'B'的顶点坐标; (2)根据题意,平移后,A的纵坐标为3,将其代入函数y=的解析式中,可得其横坐标,进而可得a的值; (3)根据题意,易得旋转后的点的坐标,代入函数解析式可得答案. 【解析】 (1)A'(,3),B'(6,0);(每个点坐标写对各得2分) (2)∵y=3 ∴ ∴x=2 ∴a=5; (3)①∵α=30° ∴相应B点的坐标是 ∴k=9; ②能, 作BB″⊥x轴,于点B″. ∵点A坐标为(-3,3), ∴OA=6, ∴OA=OB=6, ∴tan∠AOB=, ∴∠AOB=30°, 当∠BOA″=30°时,则∠BOB″=60°, A″的坐标为(-3,-3),B″的坐标为(-3,-3), ∴此时点A、B能同时落在①中的反比例函数的图象上; 同理:α=240°不符合题意; ∴α=60°.
复制答案
考点分析:
相关试题推荐
如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;
(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.manfen5.com 满分网manfen5.com 满分网
查看答案
如图,已知反比例函数y=manfen5.com 满分网的图象经过点A(1,-3),一次函数y=kx+b的图象经过点A与点C(0,-4),且与反比例函数的图象相交于另一点B.
(1)试确定这两个函数的表达式;
(2)求点B的坐标.

manfen5.com 满分网 查看答案
如图,已知反比例函数y=manfen5.com 满分网(x>0)的图象与一次函数y=-manfen5.com 满分网x+manfen5.com 满分网的图象交于A、B两点,点C的坐标为(1,manfen5.com 满分网),连接AC,AC平行于y轴.
(1)求反比例函数的解析式及点B的坐标;
(2)现有一个直角三角板,让它的直角顶点P在反比例函数图象上的A、B之间的部分滑动(不与A、B重合),两直角边始终分别平行于x轴、y轴,且与线段AB交于M、N两点,试判断P点在滑动过程中△PMN是否与△CAB总相似,简要说明判断理由.manfen5.com 满分网
查看答案
如图,反比例函数y=manfen5.com 满分网的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOC的面积.

manfen5.com 满分网 查看答案
已知正比例函数y=k1x(k1≠0)与反比例函数y=manfen5.com 满分网(k2≠0)的图象交于A、B两点,点A的坐标为(2,1)
(1)求正比例函数、反比例函数的表达式;
(2)求点B的坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.