如图,在直角坐标系xOy中,一次函数y=k
1x+b的图象与反比例函数y=
的图象交于A(1,4)、B(3,m)两点.
(1)求一次函数的解析式;
(2)求△AOB的面积.
考点分析:
相关试题推荐
(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
(2)结论应用:
①如图2,点M,N在反比例函数y=
(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:MN∥EF;
②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.
查看答案
平行于直线y=x的直线l不经过第四象限,且与函数y=
(x>0)和图象交于点A,过点A作AB⊥y轴于点B,AC⊥x轴于点C,四边形ABOC的周长为8.求直线l的解析式.
查看答案
如图,已知正比例函数y=x与反比例函数y=
的图象交于A、B两点.
(1)求出A、B两点的坐标;
(2)根据图象求使正比例函数值大于反比例函数值的x的范围.
查看答案
已知正比例函数y=kx的图象与反比例函数y=
(k为常数,k≠0)的图象有一个交点的横坐标是2.
(1)求两个函数图象的交点坐标;
(2)若点A(x
1,y
1),B(x
2,y
2)是反比例函数y=
图象上的两点,且x
1<x
2,试比较y
1,y
2的大小.
查看答案
已知双曲线y=
与直线y=
相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=
上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线y=
于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值;
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.
查看答案