满分5 > 初中数学试题 >

如图,将一块直角三角形纸板的直角顶点放在C(1,)处,两直角边分别与x,y轴平行...

如图,将一块直角三角形纸板的直角顶点放在C(1,manfen5.com 满分网)处,两直角边分别与x,y轴平行,纸板的另两个顶点A,B恰好是直线y=kx+manfen5.com 满分网与双曲线y=manfen5.com 满分网(m>0)的交点.
(1)求m和k的值;
(2)设双曲线y=manfen5.com 满分网(m>0)在A,B之间的部分为L,让一把三角尺的直角顶点P在L上滑动,两直角边始终与坐标轴平行,且与线段AB交于M,N两点,请探究是否存在点P使得MN=manfen5.com 满分网AB,写出你的探究过程和结论.

manfen5.com 满分网
(1)由题意易知点A横坐标为1,代入Y=,可用含m的代数式表示它的纵坐标;同理可表示点B坐标,再代入方程组即可求m和k的值; (2)用反证法证明.假设存在,运用一元二次方程判别式即可解出. 【解析】 (1)∵A,B在双曲线y=(m>0)上,AC∥y轴,BC∥x轴, ∴A,B的坐标分别(1,m),(2m,).(1分) 又点A,B在直线y=kx+上, ∴(2分) 解得或(4分) 当k=-4且m=时,点A,B的坐标都是(1,,不合题意,应舍去; 当k=-且m=4时,点A,B的坐标分别为(1,4),(8,,符合题意. ∴k=- 且m=4.(5分) (2)假设存在点P使得MN=AB. ∵AC∥y轴,MP∥y轴, ∴AC∥MP, ∴∠PMN=∠CAB, ∴Rt△ACB∽Rt△MPN, ∴,(7分) 设点P坐标为P(x,)(1<x<8), ∴M点坐标为M(x,-x+), ∴MP=-. 又∵AC=4-, ∴,即2x2-11x+16=0(※)(9分) ∵△=(-11)2-4×2×16=-7<0. ∴方程(※)无实数根. ∴不存在点P使得MN=AB.(10分)
复制答案
考点分析:
相关试题推荐
如图,已知直线y1=x+m与x轴、y轴分别交于点A、B,与双曲线manfen5.com 满分网(x<0)分别交于点C、D,且C点的坐标为(-1,2).
(1)分别求出直线AB及双曲线的解析式;
(2)求出点D的坐标;
(3)利用图象直接写出:当x在什么范围内取值时,y1>y2

manfen5.com 满分网 查看答案
如图,在直角坐标系中,O为原点.点A在第一象限,它的纵坐标是横坐标的3倍,反比例函数y=manfen5.com 满分网的图象经过点A.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与y轴的正半轴交于点B,且OB=AB,求这个一次函数的解析式.

manfen5.com 满分网 查看答案
已知正比例函数y=kx(k≠0)和反比例函数y=manfen5.com 满分网的图象都经过点(4,2).
(Ⅰ)求这两个函数的解析式;
(Ⅱ)这两个函数图象还有其他交点吗?若有,请求出交点的坐标;若没有,请说明理由.
查看答案
已知A(-1,m)与B(2,m+3manfen5.com 满分网)是反比例函数manfen5.com 满分网图象上的两个点.
(1)求k的值;
(2)若点C(-1,0),则在反比例函数manfen5.com 满分网图象上是否存在点D,使得以A,B,C,D四点为顶点的四边形为梯形?若存在,求出点D的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,已知直线y=manfen5.com 满分网x与双曲线manfen5.com 满分网交于A,B两点,且点A的横坐标为4.
(1)求k的值;
(2)若双曲线manfen5.com 满分网上一点C的纵坐标为8,求△AOC的面积;
(3)过原点O的另一条直线l交双曲线manfen5.com 满分网于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.