如图,已知:正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数y=
(k>0,x>0)的图象上,点P(m,n)是函数y=
(k>0,x>0)的图象上的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF中和正方形OABC不重合部分的面积为S.
(1)求点B坐标和k的值.
(2)当S=
时,求P的坐标.
(3)写出S关于m的函数关系式.
考点分析:
相关试题推荐
如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=
(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数和反比例函数的解析式.
查看答案
如图,Rt△ABO的顶点A是双曲线y=
与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S
△ABO=
.
(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.
查看答案
如图.反比例函数y=-
与一次函数y=-x+2的图象交于A、B两点.
(1)求A、B两点的坐标;
(2)求△AOB的面积.
查看答案
如图,已知反比例函数y=
的图象经过点A(-
,b),过点A作AB⊥x轴,垂足为点B,△AOB的面积为
.
(1)求k和b的值;
(2)若一次函数y=ax+1的图象经过点A,并且与x轴相交于点M,求OA:OM.
查看答案
如图,将一块直角三角形纸板的直角顶点放在C(1,
)处,两直角边分别与x,y轴平行,纸板的另两个顶点A,B恰好是直线y=kx+
与双曲线y=
(m>0)的交点.
(1)求m和k的值;
(2)设双曲线y=
(m>0)在A,B之间的部分为L,让一把三角尺的直角顶点P在L上滑动,两直角边始终与坐标轴平行,且与线段AB交于M,N两点,请探究是否存在点P使得MN=
AB,写出你的探究过程和结论.
查看答案