有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.
(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;
(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.
考点分析:
相关试题推荐
如图所示,甲、乙两人玩游戏,他们准备了1个可以自由转动的转盘和一个不透明的袋子.转盘被分成面积相等的三个扇形,并在每一个扇形内分别标上数字-1,-2,-3;袋子中装有除数字以外其它均相同的三个乒乓球,球上标有数字1,2,3.游戏规则:转动转盘,当转盘停止后,指针所指区域的数字与随机从袋中摸出乒乓球的数字之和为0时,甲获胜;其它情况乙获胜.(如果指针恰好指在分界线上,那么重转一次,直到指针指向某一区域为止)
(1)用树状图或列表法求甲获胜的概率;
(2)这个游戏规则对甲乙双方公平吗?请判断并说明理由.
查看答案
袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢.
(1)请用树状图或列表格法表示一次游戏中所有可能出现的结果;
(2)这个游戏规则对双方公平吗?请说明理由.
查看答案
小刚很擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,小刚左右为难,最后决定通过掷硬币来确定.游戏规则如下:连续抛掷硬币三次,如果三次正面朝上或三次反面朝上,则由小刚任意挑选两球队;如果两次正面朝上一次正面朝下,则小刚加入足球阵营;如果两次反面朝上一次反面朝下,则小刚加入篮球阵营.
(1)用画树状图的方法表示三次抛掷硬币的所有结果;
(2)小刚任意挑选两球队的概率有多大?
(3)这个游戏规则对两个球队是否公平?为什么?
查看答案
两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序.两人采用了不同的乘车方案:
甲无论如何总是上开来的第一辆车.而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.
如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题:
(1)三辆车按出现的先后顺序共有哪几种不同的可能?
(2)你认为甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大,为什么?
查看答案
袋中有一个红球和两个白球,它们除了颜色外都相同,任意摸出一个球,记下球的颜色,放回袋中,搅匀后再任意摸出一个球,记下球的颜色.为了研究两次摸球出现某种情况的概率,画出如下树状图.
(1)请把树状图填写完整.
(2)根据树状图可知摸到一红一白两球的概率是______.
查看答案